JOINT FEDERAL/STATE APPLICATION FOR THE ALTERATION OF ANY FLOODPLAIN, WATERWAY, TIDAL OR NONTIDAL WETLAND IN MARYLAND

APPLICATION AMENDMENT 1

BEL AIR IMPOUNDMENT AND WINTERS RUN INTAKE PROJECT

Town of Bel Air Harford County, Maryland

Prepared for:

Maryland American Water Company

Prepared by:

November 30, 2015 Amended September 2016

MARYLAND AMERICAN WATER COMPANY

BEL AIR IMPOUNDMENT AND WINTERS RUN INTAKE PROJECT

TOWN OF BEL AIR, HARFORD COUNTY, MARYLAND

APPLICATION AMENDMENT I

TABLE OF CONTENTS

	Chapter 1								
1.1	Project Description, Summary of Impacts, and Location Maps								
1.2	Joint Federal/State Permit Application Form								
1.3	Adjacent Property Owner Addresses								
1.4	Public Notice Billing Approval Form								
1.5	Site Photographs								
1.6	MDE Pre-Application Meeting Request Coordination								
1.7	Agency Meeting Minutes, Correspondence, and Dam Safety Submission Summary								
	Chapter 2								
2.1	Dam Design Criteria Technical Memorandum								
2.2	Project Plans – Phase IA								
2.3	Project Plans – Phase IB								
2.4	Frac-Out Plan – Phase IB								
2.5	Floodplain Analysis								
	Chapter 3								
3.1	Wetlands & Waterways Identification & Delineation Report								
3.2	Stream Assessment Report								
3.3	Threatened & Endangered Species Coordination								
	3.3.1 Maryland DNR Coordination								
	3.3.2 USFWS Coordination								
	3.3.3 Phase I Bog Turtle Habitat Survey Report								
3.4	Maryland Historic Trust Coordination								

Chapter 1

- 1.1 Project Description, Summary of Impacts, and Location Maps
- 1.2 Completed Joint Federal/State Permit Application Form
- 1.3 Adjacent Property Owner Addresses
- 1.4 Public Notice Billing Approval Form
- 1.5 Site Photographs
- 1.6 MDE Pre-Application Meeting Request Coordination
- 1.7 Agency Meeting Minutes, Correspondence, and Dam Safety Submission Summary

1.1

Project Description, Summary of Impacts, and Location Maps

Project Description

Maryland American Water Company (MAWC) is proposing to construct an off-stream raw water storage impoundment to serve the Town of Bel Air. In addition to the off-stream impoundment, the proposed project requires a raw water intake structure on Winters Run and associated pipeline crossings of Winters Run to connect to the existing Winters Run Water Treatment Plant (WTP). The project will be completed in a phased approach with Phase IA consisting of the construction of the off-stream impoundment. Construction for the off-stream impoundment is proposed in an upland field currently used as agricultural land. Phase IB of the project will consist of the intake structure, pumping station, and connecting infrastructure between the impoundment and the WTP which will need to cross Winters Run and its floodplain.

The existing Bel Air water system is supplied primarily from the existing Winters Run Water Treatment Plant (2.0 MGD nominal capacity) that treats water from Winters Run. The Winters Run withdrawal is permitted by the Maryland Department of the Environment (MDE) at 1.4 MGD, annual average. The MAWC water system is also supplemented by water supply wells. MACW has an agreement with Harford County for a 0.5 MGD supply through an existing metered interconnection.

When stream flow drops below the minimum pass-by flow stipulated by MDE, water cannot be withdrawn by the WTP. During such times historically, Harford County has allowed the MAWC system to take water in excess of the agreement amount to meet system demands. The County is now facing projected long-term supply shortfalls and has alerted MAWC that they can no longer commit to supplemental supply. As a result, the MAWC identified and evaluated a number of options for a supplemental supply. The offstream raw water storage impoundment addresses this concern to meet demand during low flow periods.

In working with Harford County and MDE to evaluate supply alternatives, the County identified a County-owned parcel adjacent to Winters Run, upstream of the Winters Run Water Treatment Plant that could potentially be used for construction of an off-stream storage impoundment. MAWC purchased the parcel in November 2015 with the intention to construct the impoundment and create raw water storage to supply the WTP when withdrawal from the stream is restricted or prohibited. The impoundment would be refilled from the stream when flows are sufficient to meet both the supply needs and the refill rates.

Phase IA – Construction of the Off-Stream Impoundment

The proposed Bel Air Impoundment will be an off-stream, lined, earthen embankment impoundment approximately 2,000 feet long and 62 feet high with a 20-foot wide crest and the capacity to store 90 million gallons. The impoundment design utilizes a manufactured lining material due to the existing soil permeability. Additionally, the liner allows the excavated material to be used for the embankment construction which will minimize the

amount of site spoils and material import. The lining will be exposed on the bottom and interior slopes. There will be earth covering the anchor trenches.

The limit of disturbance (LOD) for Phase IA activities encompasses approximately 40 acres, and includes 0.520 acre of temporary impacts and 0.154 acre of permanent impacts to the floodplain along Winters Run.

Phase IB – Intake Structure, Pumping Station, and Transmission Pipelines

Additional facilities required for the off-stream storage impoundment system will include a raw water intake structure, pumping station, control vault, and water transmission pipelines. The proposed raw water intake structure, pumping station, and control vault are required to refill the impoundment when stream flow is available. The proposed raw water intake structure and pumping station will be constructed on the WTP-side of Winters Run, left bank facing downstream. The raw water pumping station will be located in a belowgrade, concrete vault located 1 foot below the floodplain ground surface elevation with an access shaft to the surface. The raw water pumping station will include new pumps for the water treatment plant withdrawal from the proposed raw water intake structure and the offstream storage impoundment. The water transmission pipeline from the raw water pump station to the impoundment will cross beneath Winters Run by horizontal directional drilling. With the proposed raw water intake structure and pumping station located on the WTP site, the same pipeline can be used for the impoundment withdrawal when stream flows are low and the impoundment's raw water supply is needed to meet water demands. The water intake structure is a two, half-double barrel intake screens mounted on a concrete pad with 1/8-inch (nominal 3 mm) screens connected to the pumping station by concrete-encased pipelines. The proposed facilities constructed within the floodplain will be permanently located below the floodplain ground surface elevation; therefore, these facilities will not result in permanent impacts to the floodplain.

Walkways are proposed leading from the WTP's paved driveways to the intake and raw water pumps station locations. The walkways will be installed flush with the existing grade; therefore, there will be zero-net fill within the floodplain. The weir gate on the intake dam will be replaced with an inflatable weir gate. The weir gate replacement workspace will be controlled by sandbag diversion, and the new weir gate will be located within the existing dam structure in the existing footprint below water elevation. The 12-foot long, gabion retaining wall, serving as the downstream left bank of Winters Run, will be reconstructed with rock-filled, PVC-coated, steel wire-mesh gabion baskets within the existing gabion wall's footprint. The reconstructed gabion wall will be extended 24 feet upstream to stabilize the eroded bank and to prevent future stream bank subsidence and coarse woody debris in the stream that could damage the new intake structure.

The permitted average flow from Winters Run is 1.4 million gallons per day (MGD) with a flow-by requirement of 6.07 MGD. MAWC has requested that the average daily withdrawal for the WTP to be increased from 1.4 to 1.7 MGD and the maximum to be increased from 1.7 to 8.4 MGD. When high flow events occur in Winters Run, MAWC proposes a higher flow-by requirement of 10.62 MGD for withdrawals greater than 1.7

MGD up to a maximum of 8.4 MGD. This will enable the refilling of the off-stream storage impoundment. Retaining the intake's existing withdrawal rate will allow the WTP to continue to readily supply water to the Town of Bel Air, and the additional higher flowby and withdrawal rate will maintain the normal pool and refill the impoundment supply for when higher flows occur in Winters Run. This scenario allows MAWC to take raw water during higher flow events and will not deprive downstream users and aquatic life.

The LOD necessary to accomplish Phase IB work will encompass approximately 2 acres. At this time, Phase IB work is estimated to temporarily impact 1.448 acres of floodplain and 0.064 acre across 97 linear feet of Winters Run, and permanently impact 0.006 acre across 35 linear feet of Winters Run.

Summary of Impacts

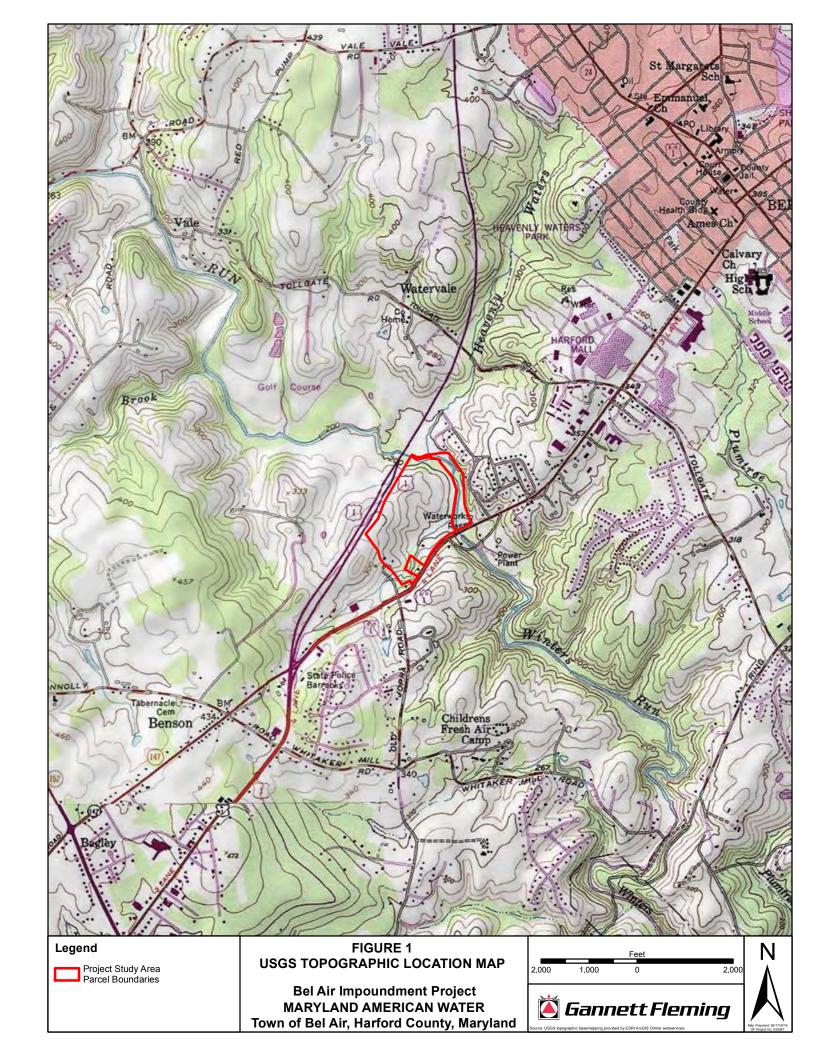
The proposed project has been designed to avoid impacts to non-tidal wetlands and non-tidal wetland buffers. Unavoidable impacts necessary to construct the project have been minimized.

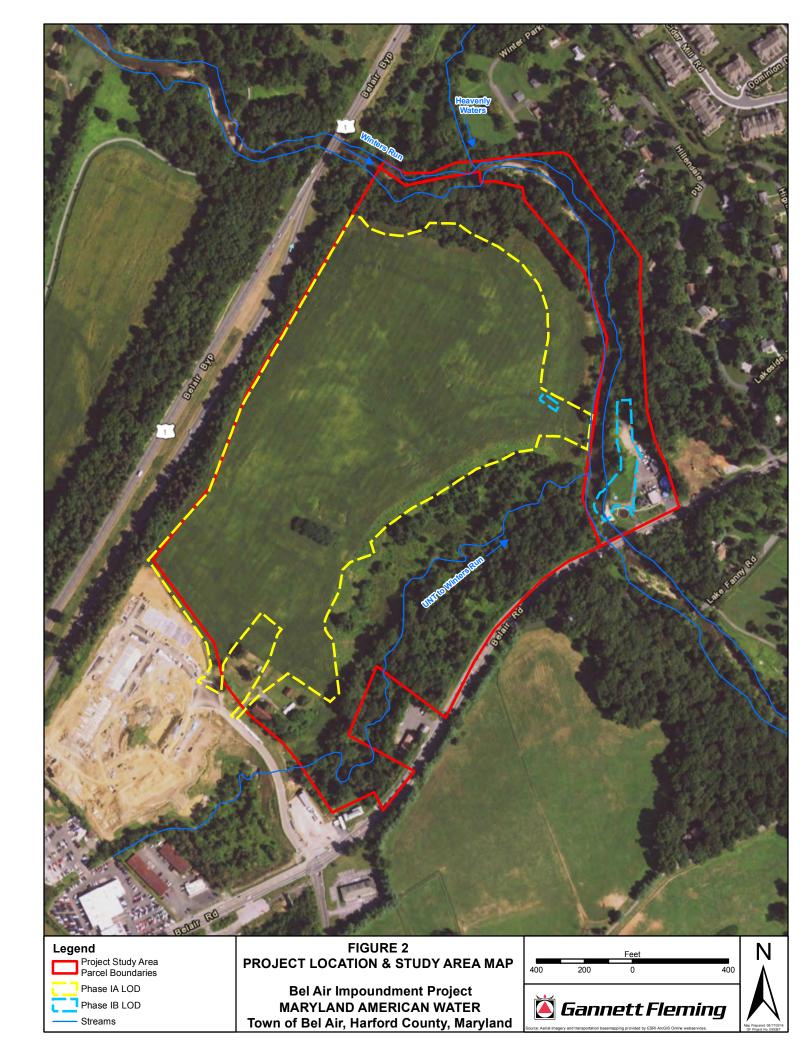
Phase IA – Construction of the Off-Stream Impoundment

- One temporary floodplain impact to construct the impoundment impact basin outfall structure.
- One permanent floodplain impact for the impoundment impact basin outfall structure.

Phase IB - Intake Structure, Pumping Station, and Transmission Pipelines

- One temporary floodplain impact to construct the proposed raw water pumping station, install raw water transmission pipelines, construct the raw water intake structure, and install gravel walkways. These structures and pipelines will be permanently located below the floodplain ground surface elevation; therefore, will not result in permanent impacts to the floodplain. The concrete walkways will be installed flush with the existing grade, which will result in no net fill and no permanent impact to the floodplain.
- One temporary stream impact to construct the proposed raw water intake structure, replace the weir gate on intake dam, and reconstruct and extend the gabion retaining wall.
- One permanent stream impact for the proposed raw water intake structure within the bed and banks of Winters Run.
- One permanent stream impact for the proposed extension of the gabion retaining wall.


Total impacts to resources are summarized in **Table 1**. Regulated activities are described and summarized in **Table 2** and depicted on **Figure 3**.


Table 1.
Total Impacts to Natural Resources

N. towal D Towa	Ten	nporary Imp	oacts	Per	Permanent Impacts			
Natural Resource Type	SQ-FT	SQ-FT AC LF		SQ-FT	AC	LF		
PHASE IA – CONSTRUCTION OF THE OFF-STREAM IMPOUNDMENT								
Non-Tidal Wetland	-	-	-	-	-	-		
Non-Tidal Stream	-	-	-	-	-	-		
100-Year (FEMA) Floodplain	22,660	0.520	-	6,690	0.154	-		
Non-Tidal Wetland Buffer	-	-	-	-	-	-		
Phase IA Total	22,660	0.520	-	6,690	0.154	-		
PHASE IB – INTAKE STRU	CUTRE, PU	MPING STA	TION, AN	D TRANSM	ISSION PIP	ELINES		
Non-Tidal Wetland	-	-	-	-	-	-		
Non-Tidal Stream	2,800	0.064	97	568	0.013	59		
100-Year (FEMA) Floodplain	39,725	0.910	-	-	-	-		
Non-Tidal Wetland Buffer	-	-	-	-	-	-		
Phase IB Total	42,525	0.974	97	568	0.013	59		
	OVI	ERALL PRO	DJECT					
Non-Tidal Wetland	-	-	-	-	-	-		
Non-Tidal Stream	2,800	0.064	97	568	0.013	59		
100-Year (FEMA) Floodplain	62,385	1.43	-	6,690	0.154	-		
Non-Tidal Wetland Buffer	-	-	-	-	-	-		
Overall Total	65,185	1.494	1.494	7,258	0.167	59		
SQ-FT = Square Feet; AC = Acre	s; LF = Linea	r Feet						

Table 2. Summary of Regulated Activities

	Regulated Activity,	Temp	porary Im	pacts	Permanent Impacts			
Location, and Description			AC	LF	SQ-FT AC		LF	
PHASE IA – CONSTRUCTION OF THE OFF-STREAM IMPOUNDMENT								
1.	Floodplain Impact (Winters Run Downstream Right Bank) Limit of Disturbance to Construct the Impact Basin Outfall Structure and Install Water Transmission Pipelines	22,660	0.520	-	-	-	-	
2.	Floodplain Impact (Winters Run Downstream Right Bank) Footprint Area of the Impact Basin Outfall Structure	-	-	-	6,690	0.154	-	
F	PHASE IB – INTAKE STRUCUTRE, PUM	IPING ST	ATION,	AND TRA	NSMISSI	ON PIPE	LINES	
3.	Floodplain Impact (Winters Run Downstream Right Bank) Limit of Disturbance to Install Water Transmission Pipelines by Horizontal Directional Drilling	1,885	0.043	-	-	-	-	
4.	Floodplain Impact (Winters Run Downstream Left Bank) Limit of Disturbance to Construct the Raw Water Pumping Station, Install Water Transmission Pipelines, and Install Concrete Walkways	37,840	0.867	-	-	-	-	
5.	Temporary Stream Impact (Winters Run within the Bed & Banks) Limit of Disturbance to Construct the Proposed Raw Water Intake Structure, Replace the Weir Gate on the Intake Dam, Reconstruction of the Existing Gabion Wall (12 ft)	2,800	0.064	97	-	-	-	
6.	Permanent Stream Impact (Winters Run within the Bed & Banks) Proposed Raw Water Intake Structure Footprint	-	-	-	280	0.006	35	
7.	Permanent Stream Impact (Winters Run Downstream Left Bank) Proposed Gabion Wall Extension (24 ft)	-	-	-	288	0.007	24	
	Total	65,185	1.494	97	568	0.013	59	
SQ	-FT = Square Feet; AC = Acres; LF = Linear	Feet						

1.2

Completed Joint Federal/State Permit Application Form

JOINT FEDERAL/STATE APPLICATION FOR THE ALTERATION OF ANY FLOODPLAIN, WATERWAY, TIDAL OR NONTIDAL WETLAND IN MARYLAND

	R AGENCY USE ONLY	Data Data with a Complete	
	olication Number e Received by State	Date Determined Complete Date(s) Returned	
	e Received by Corps		
Тур	pe of State permit needed	Date of Field Review	
Тур	e of Corps permit needed	Agency Performed Field Review	
• :	++++++++++++++++++++++++++++++++++++++	os and plans to the Wetlands and V	Vaterways Program as noted on
Ple	ase check one of the following:		
RE	SUBMITTAL: APPLICATION AMENDMENT:	X MODIFICATION TO AN I	EXISTING PERMIT:
		ING FOR AUTHORIZATION	X
PRI	EVIOUSLY ASSIGNED NUMBER (RESUBMITTALS AND AMEND		
	TTT . G 1	Application 1	No. 20156803/15-NT0386
DA	TE September 30, 2016		
1	ADDI ICANT INFODMATION.		
1.	APPLICANT INFORMATION:		
AP	PLICANT NAME:		
A.	Name: Robert F. McIntyre	B. Daytime Telephone	: 410-838-8404
C.	Company: Maryland American Water Company	D. Email Address: robert.mc	intyre@amwater.com
E.	Address: 260 Gateway Drive, Suite 17-18B		•
F.	City: Bel Air	State: MD	Zip: 21014-399
AG	ENT/ENGINEER INFORMATION:		
A.	Name: Sophia Liskovich, P.E.	B. Daytime Telephone	: 443-348-2017 x. 8337
C.	Company: Gannett Fleming, Inc.	D. Email Address: sliskovich	n@gfnet.com
E.	Address: Rutherford Plaza, 7133 Rutherford Road, S-300		
F.	City: Baltimore	State: MD	Zip: 21244
EN	VIRONMENTAL CONSULTANT:		
٨	Name: David H. Graff	P. Daytima Talanhana	: 717-763-7211 x. 2073
A. C.	Company: Gannett Fleming, Inc.	D. Email Address: dgraff@g	
E.	Address: 207 Senate Avenue	D. Eman Address. <u>dgran eg</u>	<u>met.com</u>
F.	City: Camp Hill	State: PA	Zip: 17011
••	ony. Cump IIII	<u> </u>	
CO	NTRACTOR (If known): Not known at this time.		
A.	Name:	B. Daytime Telephone	:
C.	Name: Company:	D. Email Address:	•
E.	Address:		
F.	City:	State:	Zip:
PR	INCIPAL CONTACT:		
		B	515 5 C 5011 0C 5
A.	Name: David H. Graff		: <u>717-763-7211 x. 2073</u>
C.	Company: Gannett Fleming, Inc.	D. Email Address: <u>dgraff@g</u>	<u>inet.com</u>
E. F.	Address: 207 Senate Avenue City: Camp Hill	State: PA	Zip: 17011
1.	City. Camp iiii	siaic. IA	∠ıp. 1/011

2. PROJECT DESCRIPTION a. GIVE WRITTEN DESCRIPTION							
Maryland American Water proposes to construct an off-stream raw water storage impoundment to serve the Town of Bel Air in							
Harford County. The proposed project							
off-stream impoundment, and Phase IB	consisting o	f the intake	structure, pu	imping station, an	d connect	ing infrastr	ructure.
Has any portion of the project been cor	npleted?	Y	es _	X No	If yes, e	explain _	
Is this a residential subdivision or community is subdivision or community is subdivision or community in the subdivision or community is subdivision or community in the subdivision or community is subdivision or community in the subdivision or community is subdivision.	y <u>N</u>	/A acres			_ No		
b. ACTIVITY: Check all activities to appropriate.	that are prop	osed in the	wetland, wat	erway, floodplain	, and nont	idal wetlan	nd buffer as
A. X filling B. dredging C. X excavating	D. <u>X</u> E	flooding of water draining	or impoundi	ng	F G H	veg	ding oving or destroying etation ding structures
Area for item(s) checked: Wetland Expanded Area of stream impact 2,800 Length of stream affected 97	Buffer (Nont (sq. ft.)	idal Wetlan		fontidal Wetland (sq	•	0	(sq. ft.)
c. TYPE OF PROJECTS: Project	Dimensions						
For each activity, give overall length ar square feet in column 3. For activities ponds, give average depth (in feet) for	in tidal water	rs, give max	imum distan	ce channelward (in feet) in of fill or dr	column 4.	For dam or small
	Length	Width	Area	Channelward	C	Pond	material (cubic yards
	(Ft.)	(Ft.)	Sq. Ft.	Encroachment		Depth	below MHW or OH
	1	2	3	4		5	6
A. Bulkhead					-		
B. Revetment							
C. Vegetative Stabilization							
D V Cobions	24	12		12			107

1	, 2	e average depth (in feet) for t	Length (Ft.)	Width (Ft.)	Area Sq. Ft. 3	Maximum/Average Channelward Encroachment 4	Pond Depth 5	Volume of fill/dredge material (cubic yards) below MHW or OHW 6
A.		Bulkhead				-		
B.		Revetment						
C.		Vegetative Stabilization						
D.	X	Gabions	24	12		12 -		107
E.		Groins				<u> </u>		
F.		_ Jetties						
G.		Boat Ramp						
H.		_ Pier						
I.		Breakwater						
J.	<u>X</u>	Repair & Maintenance	27	27	729			55
K.		_ Road Crossing						
L.	X	_ Utility Line	1,475	1.5	1.448			
M.	X	Outfall Construction	150	150	22,660			
N.		Small Pond	2000	0.50				
Ο.	<u>X</u>	_ Dam	2,000	950	815,214		45	-
P.		_ Lot Fill						
Q.		Building Structures						
R.		Culvert						
S.		Bridge						
T.		Stream Channelization						
U. V.		Parking Area			-			
٧.		_ Dredging						
W.	1.	New 2Other (explain)	Mai	intenance	3	Hydraulic	4	Mechanical

d. PROJECT PURPOSE: Give brief written description of the project purpose:

The existing Bel Air water system is supplied primarily from the existing Winters Run Water Treatment Plant (WTP, 2.0 MGD nominal capacity) that treats water from the existing raw water intake on Winters Run (MDE permitted 1.4 MGD annual average withdrawal). When stream flow drops below the minimum pass-by-flow stipulated by MDE, water cannot be withdrawn by the WTP. During these events and drought conditions, Harford County's water supply has supplied water to the Town via an existing metered interconnection. Due to projected long-term shortfalls, Harford County will not be able to provide flows greater than 0.5 MGD in the future. The proposed off-stream storage impoundment would be used to supply the WTP when stream withdrawal is restricted or prohibited. The impoundment would be refilled from the stream when flows are sufficient to meet both supply needs and refill rates.

3. a.	PROJECT LOCATION: LOCATION INFORMATION:
A.	County: Harford B. City: Bel Air C. Name of waterway or closest waterway Winters Run
D.	State stream use class designation: Recreational Trout Waters and Public Water Supply (IV-P)
E.	Site Address or Location: 303-301 Old Jopa Rd, Bel Air, MD 21014;
	Parcel Address: 1120 Baltimore Pike, Bel Air, MD 21014
	Directions from nearest intersection of two state roads: From the intersection of Route 147 (Harford Road) and US Route 1
	el Air Bypass), continue on Belair Rd/Baltimore Pike for 0.8 miles. Turn left onto Old Joppa Road for 0.2 miles, the project site is
100	ated on the right and accessible on a gravel driveway.
G.	Is your project located in the Chesapeake Bay Critical Area (generally within 1,000 feet of tidal waters or tidal wetlands)?: Yes X No
H.	County Book Map Coordinates (Alexandria Drafting Co.); Excluding Garrett and Somerset Counties:
_	Map: 0048 Letter: E Number: 0004 (to the nearest tenth) FEMA Floodplain Map Panel Number (if known): 24025C0163E
I.	FEMA Floodplain Map Panel Number (if known): 24025C0163E
J.	1. <u>39°31'1.21"N</u> latitude 2. <u>76°22'22.78"W</u> longitude
	ACTIVITY LOCATION: Check one or more of the following as appropriate for the type of wetland/waterway where you are sposing an activity:
Α	Tidal Waters F 100-foot buffer (nontidal wetland HX 100-year floodplain
В.	Tidal Waters F. 100-foot buffer (nontidal wetland Tidal Wetlands Special Aquatic Site (e.g., mudflat, vegetated shallows) F. 100-foot buffer (nontidal wetland H. X 100-year floodplain (outside stream channel) I. River, lake, pond J. Other (Explain)
C.	Special Aquatic Site G. X In stream channel I. River, lake, pond
	(e.g., mudflat, 1. Tidal 2. X Nontidal J. Other (Explain)
	Nontidal Wetland
E.	25-foot buffer (nontidal
	wetlands only)
	LAND USE:
A.	Current Use of Parcel Is: 1. X Agriculture: Has SCS designated project site as a prior converted cropland?
	Yes No 2 Wooded 3 X Marsh/Swamp 4 Developed
5.	Current Use of Parcel Is: 1. X Agriculture: Has SCS designated project site as a prior converted cropland? Yes No 2. X Wooded 3. X Marsh/Swamp 4. Developed Other
	Present Zoning Is: 1 Residential 2 Commercial/Industrial 3 Agriculture 4 Marina 5X_ Other Other: Least Protective
C.	Project complies with current zoning X Yes No
TH	E FOLLOWING INFORMATION IS REQUIRED BY THE STATE (blocks 4-7):
	REDUCTION OF IMPACTS: Explain measures taken or considered to avoid or minimize wetland losses in F. Also check ms A-E if any of these apply to your project.
A.	X Reduced the area of B. Reduced size/scope of C. X Relocated structures
	disturbance project D Redesigned project
E.	Other

minimize impacts to waterways and floodplains.	The proposed impacts to Winters Run an	
required to connect the off-stream storage impor	andment with the existing water treatment	pian and raw water intake.
Describe reasons why impacts were not avoided or reduce	ed in Q. Also check Items G-P that apply to your p	roject.
G. X Cost	K Parcel size	N Safety/public welfare issue
H. Extensive wetlands on site	L. Other regulatory	O. Inadequate zoning
I. X Engineering/design constraints	requirement M. Failure to accomplish	P. Other
J. Other natural features	M Failure to accomplish project purpose	
	· · · ·	
Q. Description Wetland impacts were avoraged for the work area needed to install pipelines and		ain disturbances were limited to allow only f disturbance as shown on the drawings.
5. LETTER OF EXEMPTION: If you are a explain why the project qualifies:	applying for a letter of exemption for activi	ities in nontidal wetlands and/or their buffers,
A. No significant plant or	B Repair existing structure/fil	1
wildlife value and wetland impact	C. Mitigation Project	
1. Less than 5,000	D. Utility Line	
square feet	1. Overhead	
2. In an isolated nontidal	2. Underground	
wetland less than 1 acre in size		
E. Other (explain)		
F. X Check here if you are not applying a lift YOU ARE APPLYING F. 6. ALTERNATIVE SITE ANALYSIS: Expecheck any items in D-L if they apply to your pro-	FOR A LETTER OF EXEMPTION, PR	for this project were rejected in M. Also
A 1 site	B. X 2 - 4 sites	C 5 or more sites
Alternative sites were rejected/not considered for	or the following reason(s):	
D. X Cost	H. X Greater wetlands	L. Other
E. X Lack of availability	I. impact Water dependency	
F. Failure to meet project	J. Inadequate zoning	
purpose	K. X Engineering/design	
G. Located outside	constraints	
general/market area M. Explanation: Another site located furthe	r unstroom along Winters Pun was conside	ared Hawayar due to its distance from the
existing water treatment plant, presence of envir		
engineering and design consideration for this pro-	•	
7. PUBLIC NEED: Describe the public need your project. (If you are applying for a letter		
A. X Economic B. Safety	C. X Health/welfare D. Does not provide public benefits	E Other
F. Description See Section 1.1 Project De	scription	

8.	OTHER APPROVALS NEEDER	D/GR	RANTED:							
A.	Agency	В.	Date Sought	1.	C. Decision Granted 2.	Denied	D.	Decision Date	E.	Other Status
	MHT MDNR W&H		11/18/2015 8/27/2014		12/23/2015 9/17/2014				_	
	USFWS		8/27/2014		9/22/2014				_	
	MDE - Water Appropriations		9/30/2015		Pending		<u> </u>		- -	
9.	MITIGATION PLAN: Please pr	ovide	e the following	infor	mation:				_	
a.	Description of a monetary compensation of a mone				cable (for state req		ts only).	Attach anothe	er sheet i	f
	Cive a buist description of the pure		d mitigation nu	oioat	NI/A					
b.	Give a brief description of the pro-	pose	a mugauon pro	ojeci.	N/A					
c.	Describe why you selected your p rejected. N/A	_	_		ncluding what othe		ere consid	lered and wh	y they w	ere
d.	Describe how the mitigation site v	vill b	e protected in the	he fu	ture. N/A					
	vide names and mailing addresses b	elow	(Use separate s	sheet,	, if necessary):			es B		
a.	See Section 1.3	_					c			
		_	<u> </u>							
		_								
11.	HISTORIC PROPERTIES: Is									
A.	X Yes B No	C	Un	know	7 n					
12. nec	ADDITIONAL INFORMATION SESSARY:	ON:	Use this space	for d	etailed responses to	any of t	he previou	ıs items. Atta	ach anot	ner sheet if

Check box	x if data is eliciosed for any one of more	; or the i	10110	owing (see checklist for required	1 111101	illiauoli).
A. B. X C. X		D. E. F.		Field surveys Alternate site analysis Market analysis		X Site plan Avoidance and minimization analysis
I. <u>X</u>	Other (explain) See Permit Applica	ıtion Tal	ble o	of Contents		
informatic accurate to request in Waters of accordance grant pern site for in- work with Managemental addit	CATION: designate and authorize the agent name on that is requested. I certify that the othe best of my knowledge and belief, formation in addition to that set forth the United States have been identified be with the Corps of Engineers Wetlar mission to the agencies responsible for a spection purposes during working hour nout the appropriate authorization. I ent Plan. I understand that none of the ional required information be consider to sign the application will result in the	e inform I under herein a d and de nds Deli authoriz es. I wil also cer e inform ered cor	nation rstand as m leline lineat zation all ab ertify nation	n on this form and on the attadd that any of the agencies involvable be deemed appropriate in chated on site, and that all jurisdion Manual (Wetlands Research of this work, or their duly autide by the conditions of the per that the proposed works are n contained in the application fential under applicable laws.	nched in onside diction ch Prochorize rmit of consifernment of consifernment of consifernment of consifernment of consifernment of consifernment of consider of consideration	plans and specifications is true and authorizing the proposed works may be lering this proposal. I certify that all regram Technical Report Y-87-1). The regram Technical Report Y-87-1 is ed representative, to enter the project or license if issued and will not begin istent with Maryland's Coastal Zone is confidential and that I may request

WHERE TO MAIL APPLICATION

DATE:

Maryland Department of the Environment Water Management Administration Regulatory Services Coordination Office 1800 Washington Boulevard, Suite 430 Baltimore, Maryland 21230 Telephone: (410) 537-3762 1-800-876-0200

BEFORE YOU MAIL... DON'T FORGET...

- <u>SIGN</u> AND <u>DATE</u> THE APPLICATION. THE LANDOWNER MUST SIGN.
- <u>SEVEN (7) COPIES</u> OF ALL DOCUMENTS (APPLICATION, PLANS, MAPS, REPORTS, ETC.) MUST BE RECEIVED TO BEGIN OUR REVIEW.
- INCLUDE FIVE COPIES OF A <u>VICINITY MAP</u> (LOCATION MAP) WITH THE <u>PROJECT SITE</u> PINPOINTED.
- SEND AN <u>APPLICATION FEE OF \$750</u> ALONG WITH A COPY OF THE FIRST PAGE OF THE APPLICATION TO MARYLAND DEPARTMENT OF THE ENVIRONMENT, P.O. BOX 2057, BALTIMORE, MD 21203-2057. PLEASE REFER TO OUR WEBSITE http://www.mde.state.md.us/wetlands FOR FURTHER INSTRUCTIONS.

SAMPLE PLANS MAY BE OBTAINED BY PHONE (1-800-876-0200)

OR E-MAIL acunabaugh@mde.state.md.us.

LANDOWNER MUST SIGN:

1.3

Adjacent Property Owner Notification Addresses

CERTIFICATION OF NOTIFICATION

ATTENTION APPLICANT:

Please complete this form and return to Wetlands and Waterways Program, Water Management Administration, 1800 Washington Boulevard, Baltimore, MD 21230. Be sure to include the Division number, a copy of the tax map and your notification letter, and sign the form. Please include complete names and complete addresses, including zip codes. Your application is incomplete until this certification is received.

Tracking No: 201561803/15-NT-0386 Division No: 150858 Assigned Staff: Tamene Dilnesahu Description of the project: The Bel Air Impoundment Project proposes to construct an off-stream, lined earthen embankment impoundment with the capacity to store 360 acre-feet of water. The impoundment will be connected to the existing Winters Run Water Treatment Plant through raw water transmission pipes that will cross beneath the streambed of Winters Run. The existing raw water intake and pump station will be replaced.						
NAME	ADDRESS					
See attached table.						
If delivery was not made to certain per non-delivery on the reverse side of this form	rsons, please list those persons and the reasons for n.					
· · · · · · · · · · · · · · · · · · ·	ons who own properties which have a common boundary officials have been notified. I have notified them by					
Signature of Applicant	<u>4.15.16</u> Date					
Robert F. McIntyre, Maryland American Water	410-838-8404					
Please Print Name	Telephone Number					

CERTIFICATION OF NOTIFICATION

ATTENTION APPLICANT:

Please complete the form below and return to, MDE Dam Safety Division, Water Management Administration, 1800 Washington Blvd, Suite 440, Baltimore, Maryland 21230-1708. Be sure to include the WMA File number, and to sign and date the form. Please include complete names and complete addresses, including zip codes.

CERTIFICATION NOTICE

I hereby certify that I have properly notified (by certified mail or in person) the contiguous property owners and appropriate local officials of: See attached table.

WMA File No. for a permit to (describe project):

The Bel Air Impoundment Project proposes to construct an off-stream, lined earthen embankment impoundment with the capacity to store 360 acre-feet of water. The impoundment will be connected to the existing Winters Run Water Treatment Plant through raw water transmission pipes that will cross beneath the streambed of Winters Run. The existing raw water intake and pump station will be replaced.

Persons notified were (continue on reverse side if necessary):

Name	Address
See attached table.	
_ ==	

If delivery was not made to certain persons, please list those persons and the reasons for non-delivery on the reverse side of this form. 4,15-16 Date

Robert F. McIntyre, Maryland American Water

Please Print Name

Excellence Delivered As Promised

<Month Day, Year>

CERTIFIED MAIL NO. <a

<Property Owner>
<Mailing Address – Line 1>
<Mailing Address – Line 2>

RE: This is an Adjacent Property Owner Notification Pursuant to Maryland Annotated Code, Environment Article §5-204 and §5-506.

Permit Applicant Name	Maryland American Water Company	
Project Name	Bel Air Impoundment Project	
Project Location	Town of Bel Air, Harford County, Maryland	
Permit Application File Names	Wetlands & Waterways Tracking No. 201561803/15-NT-0386 and AI No. 150858	
	Dam Safety Permit No. 16-OB-0036	
	Water Appropriation and Use Permit Application No. HA1976S015/07	

Dear < Property Owner>:

You are receiving this letter because your property boundary is shared or near property owned by Maryland American Water Company (MAWC), a local water company. As part of permit application requirements (pursuant Maryland Annotated Code, Environmental Article §5-204 and §5-506), all adjacent property owners must be notified to obtain input from the public; therefore, MAWC is notifying you of this project through this letter. You do not need to take any actions as a result of this letter. Enclosed is a map depicting the proposed project location and its proximity to your property (refer to **Figure 1**).

Project Information

MAWC has submitted a permit application to the Maryland Department of the Environment's (MDE) Wetlands and Waterways Program and the Dam Safety Division requesting authorization to construct a drinking water storage impoundment on property that is owned by MAWC. MAWC submitted a permit application to MDE's Water Supply Program, Source Protection and Appropriation Division, to increase the existing water intake appropriation and withdrawal from Winters Run in order to fill and operate the proposed impoundment.

The project name is the Bel Air Impoundment Project and it proposes to construct a drinking water impoundment in an open field (Parcel No. 0048-0004E-0106) along Winters Run. The proposed Bel Air Impoundment (Dam Safety Permit No. 16-OB-0036) will be an off-stream, lined earthen embankment impoundment approximately 2,300 feet long and 58 feet high with a 20-foot wide crest and the capacity to store 360 acre-feet of water (90 million gallons). The impoundment will be connected to the existing Winters Run Water Treatment Plant through pipes that will cross beneath the streambed of Winters Run. The existing water intake structure on Winters Run, as well as the existing pump station, will be replaced or upgraded as part of the project. Winters Run will not be impounded as part of this project. No changes to adjacent property owners, downstream owners, or water users are proposed as part of this project.

In order to fill the proposed off-stream drinking water storage impoundment, MAWC has applied for a Permit to Appropriate and Use Waters of the State, and has been assigned permit application number HA1976S015/07. MAWC seeks to increase the existing appropriation from 1,400,000 gallons per day (gpd) on a yearly basis to 1,700,000 gpd on a yearly basis, and increase the existing maximum daily withdrawal from 1,700,000 gpd to 8,400,000 gpd. Water will be withdrawn from Winters Run and used for the community water supply serving the Town of Bel Air. Gannett Fleming, Inc. serves as MAWC's engineering and environmental consultants and is assisting MAWC with the design and permitting of the project.

Notification Information & Points of Contact

Since you are a contiguous property owner, you are being notified of this application, as required by Maryland Annotated Code, Environmental Article §5-204 and §5-506. MDE will place your name on the "List of Interested Persons" for this project. At a later date, you will be provided a second notice with an opportunity for submitting comments or additional information about the application or request a public informational hearing.

Project notifications have also been issued to the following Executive Offices for the Town of Bel Air and Harford County. If you would like to speak with the Executive Officers notified, their contact information is provided below.

	Name	Executive Office	Phone Number
Town of Bel Air	Susan U. Burdette	Chair of the Board of Town Commissioners	(410) 638-4550
	Jesse Bane	Town Administrator	(410) 638-4550
Harford County	Richard Slutzky	County Council President	(410) 638-3522
	Barry Glassman	County Executive	(410) 638-3350

If you wish to review the States' application files, provide comments, or speak with MDE regarding this project, the following MDE contact information is provided below.

Name of Regulator MDE Division & Program	Mailing Address	Phone Number
Tamene Dilnesahu Waterways Construction Division Wetlands and Waterways Program	1800 Washington Blvd. Suite 430 Baltimore, MD 21230	(410) 537-3803
John Roche Dam Safety Division Sediment, Stormwater and Dam Safety Program	1800 Washington Blvd. Suite 440 Baltimore, MD 21230	(410) 537-3552
John Grace Source Protection and Appropriation Division Water Supply Program	1800 Washington Blvd. Baltimore, MD 21230	(410) 537-3590

If you have any questions concerning the permit applications submitted to MDE, you may contact me at (443) 348-2017, extension 8337 or at the address below.

Very truly yours,

Sophia Z. Liskovich, P.E. GANNETT FLEMING, INC.

Rutherford Plaza Building, Suite 300 7133 Rutherford Road, Baltimore, MD 21244

Enclosures: Figure 1 – Project Vicinity Map

cc: T. Nokovich, P.E. (MAWC)

C. Beenenga, P.E. (GF)

D. Graff (GF)

Excellence Delivered As Promised

<Month Day, Year>

CERTIFIED MAIL NO. <0000 0000 0000 0000 0000> RETURN RECEIPT REQUESTED

<Executive Officer>, <Position>
<County/Town Government>
<Mailing Address – Line 1>
<Mailing Address – Line 2>

RE: This is a County/Town Executive Officer Notification Pursuant to Maryland Annotated Code, Environment Article §5-204 and §5-506.

Permit Applicant Name	Maryland American Water Company	
Project Name	Bel Air Impoundment Project	
Project Location	Town of Bel Air, Harford County, Maryland	
Permit Application File Names	Wetlands & Waterways Tracking No.	
	201561803/15-NT-0386 and AI No. 150858	
	Dam Safety Permit No. 16-OB-0036	
	Water Appropriation and Use Permit Application No.	
	HA1976S015/07	

Dear < Executive Officer>:

Gannett Fleming, Inc. (GF) on behalf of Maryland American Water Company (MAWC) has submitted applications to Maryland Department of the Environment's (MDE) Wetlands and Waterways Program and Dam Safety Division of the Water Management Administration (WMA) for permits to construct an off-stream raw water storage impoundment to serve the Town of Bel Air (**Figures 1** and **2**). Also, GF on behalf of MAWC submitted a permit application to MDE's Water Supply Program, Source Protection and Appropriation Division, to increase the existing water intake appropriation and withdrawal from Winters Run in order to fill and operate the proposed impoundment.

Project Information

The project name is the Bel Air Impoundment Project and it proposes to construct a drinking water impoundment in an open field (Parcel No. 0048-0004E-0106) along Winters Run. The proposed Bel Air Impoundment (Dam Safety Permit No. 16-OB-0036) will be an off-stream, lined earthen embankment impoundment approximately 2,300 feet long and 58 feet high with a 20-foot wide crest and the capacity to store 360 acre-feet of water (117.3 million gallons). The impoundment will be

connected to the existing Winters Run Water Treatment Plant through pipes that will cross beneath the streambed of Winters Run. The existing water intake structure on Winters Run, as well as the existing pump station, will be replaced or upgraded as part of the project. Winters Run will not be impounded as part of this project. No changes to adjacent property owners, downstream owners, or water users are proposed as part of this project.

In order to fill the proposed off-stream drinking water storage impoundment, MAWC has applied for a Permit to Appropriate and Use Waters of the State, which has been assigned permit application number HA1976S015/07. MAWC seeks to increase the existing appropriation from 1,400,000 gallons per day (gpd) on a yearly basis to 1,700,000 gpd on a yearly basis, and increase the existing maximum daily withdrawal from 1,700,000 gpd to 8,400,000 gpd. Water will be withdrawn from Winters Run and used for the community water supply serving the Town of Bel Air. Gannett Fleming, Inc. serves as MAWC's engineering and environmental consultants and is assisting MAWC with the design and permitting of the project.

Notification Information & Points of Contact

In accordance with Maryland Annotated Code, Environmental Article §5-204 and §5-506, we are hereby notifying you, as the Position for County/Town Government, of the proposed project and permit applications submitted to MDE's Wetlands and Waterways Program and Dam Safety Division of the Water Management Administration, and the Source Protection and Appropriation Davison of the Water Supply Program. MDE will place your name on the "List of Interested Persons" for this project. At a later date, you will be provided a second notice with an opportunity for submitting comments or additional information about the permit applications or request a public informational hearing.

If you wish to review the States' application files, provide comments, or speak with MDE regarding this project, the following MDE contact information is provided below.

Name of Regulator MDE Division & Program	Mailing Address	Phone Number
Tamene Dilnesahu Waterways Construction Division Wetlands and Waterways Program	1800 Washington Blvd. Suite 430 Baltimore, MD 21230	(410) 537-3803
John Roche Dam Safety Division Sediment, Stormwater and Dam Safety Program	1800 Washington Blvd. Suite 440 Baltimore, MD 21230	(410) 537-3552
John Grace Source Protection and Appropriation Division Water Supply Program	1800 Washington Blvd. Baltimore, MD 21230	(410) 537-3590

If you have any questions concerning the permit applications submitted to MDE, you may contact me at (443) 348-2017, extension 8337 or at the address below.

Very truly yours,

Sophia Z. Liskovich, P.E.

GANNETT FLEMING, INC.

Rutherford Plaza Building, Suite 300

7133 Rutherford Road, Baltimore, MD 21244

Enclosures: Figure 1 – USGS Topographic Location Map

Figure 2 – Project Vicinity Map with Adjacent Property Owner Notification Table

cc: T. Nokovich, P.E. (MAWC)

C. Beenenga, P.E. (GF)

D. Graff (GF)

1.4 Public Notice Billing Approval Form

MARYLAND DEPARTMENT OF THE ENVIRONMENT WATER MANAGEMENT ADMINISTRATION NONTIDAL WETLANDS AND WATERWAYS DIVISION 1800 WASHINGTON BLVD., SUITE 430 BALTIMORE, MARYLAND 21230 410-537-3745

PUBLIC NOTICE BILLING APPROVAL FORM

PROJECT NUMBER

16-OB-0036

I agree to pay all expenses associated with the publishing of	ар	ublic notice for	
the Nontidal Wetlands and Waterways Application submitted	by	Maryland American Water	
(Applicant's Name), which was dated and signed by you on _	11	25.15	

Applicant/Agent Signature

Robert F. McIntyre

Printed Name of Signee

TRACKING NO. 201561803

Please Print

Billing Address

Maryland American Water

Attn: Robert F. McIntyre

260 Gateway Drive, Suite 17-18B

Bel Air, MD 21014-399

Phone Number

410-838-8404

NOTICE TO APPLICANTS

Certain projects involving nontidal wetlands and waterways permits require that a description of the proposed project be published in a local newspaper. This advertisement is necessary to fulfill legal public notice requirements. Projects that require public notice include, but are not limited to, the following:

- Certain projects regulated by the U. S. Army Corps of Engineers that require a State Water Quality Certification.
- Projects resulting in a loss of more than 5,000 square feet of nontidal wetlands.
- Projects in nontidal wetlands of special State concern or wetlands having special plant or wildlife values.
- Projects resulting in a loss of more than 1 acre if isolated nontidal wetlands.
- Projects affecting waters of the State, including their 100 year frequency floodplain, except roads, bridges, and culverts that meet minimum design standards, temporary construction, minor repairs, or routine maintenance.

The Water Management Administration will arrange advertisement of the project for you. However, as the applicant for the project, you are responsible for paying the publishing costs. In order for this process of public notice to occur, your approval is necessary prior to publishing. Please complete the form on the other side of this page and return it to the Water Management Administration so that your proposed project may be advertised without delay. Please make sure to sign the form. Processing of your application cannot continue until a signed form is received.

Please call the Nontidal Wetlands and Waterways Division at 410-537-3745 if you have any questions.

Thank you for your assistance in this matter.

PLEASE COMPLETE THE OTHER SIDE OF THIS PAGE

Also, please provide the names and mailing addresses of adjacent property owners. Add additional pages if needed. See attached tables.			

1.5 Site Photographs

Photo 1 (09-29-2015)
View of the agricultural field looking southwest from the approximate reservoir location. New residential construction and the barn are visible in the distance.

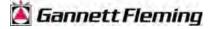
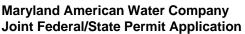


Photo 2 (09-29-2015) View of the agricultural field and reforestation planting area looking east.

Photo 3 (09-29-2015) View of the agricultural field and approximate reservoir location looking south from the floodplain forest tree line.


Photo 4 (09-29-2015) View of the agricultural field and floodplain forest tree line looking east from the northwestern most corner of the agricultural field.

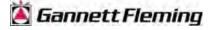


Photo 5 (10-19-2015) View of Winters Run looking downstream from near the proposed floodplain and stream crossing. View is south.

Photo 6 (10-19-2015)
View of the downstream right bank of Winters Run at the approximate location of the proposed outfall structure and water pipeline crossing. View is west.

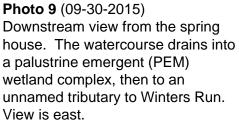
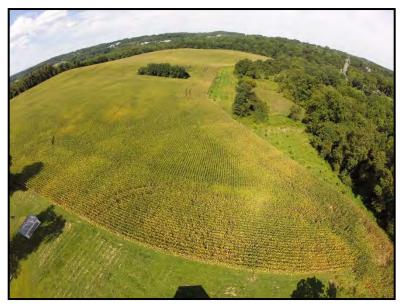

Photo 7 (10-19-2015) View of the downstream left bank of Winters Run at the approximate water pipeline crossing. View is east.

Photo 8 (11-02-2015) View of springhouse located downslope of the reforestation planting area and the wetland complex.

Maryland American Water Company Joint Federal/State Permit Application



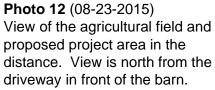
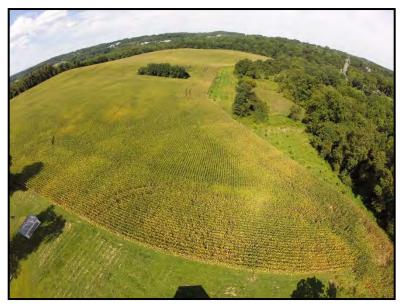

Photo 10 (08-23-2015) View of improvements to Old Joppa Road near the barn. View is southeast.

Photo 11 (08-23-2015) View of the driveway and road improvements adjacent to the barn. View is northeast.

Maryland American Water Company Joint Federal/State Permit Application



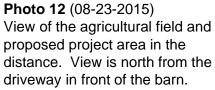

Photo 10 (08-23-2015) View of improvements to Old Joppa Road near the barn. View is southeast.

Photo 11 (08-23-2015) View of the driveway and road improvements adjacent to the barn. View is northeast.

Maryland American Water Company Joint Federal/State Permit Application

1.6 MDE Pre-Application Meeting Request Coordination

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Water Management Administration • Wetlands and Waterways Program 1800 Washington Boulevard • Suite 430 • Baltimore, Maryland 21230 410-537 3745 • 800-633-6101 • www.mde.state.md.us

Pre-Application Meeting Request

All fields with an asterisk * are required unless noted otherwise.

Use the SUBMIT by EMAIL button to send your request. READ the sending instructions.

Use the SUBMIT by EMAIL button to send your request. READ the sending instructions. Optionally, save this form, attach it to an email, and return it to: wetlandspreap.mde@maryland.gov.

Project location	Site Address	House, lot, or location number	
Complete all of the following project location fields	If a site address is not available. Be sure to describe the project location in the available field below.	Street name	
		* City	
		Bel Air MD 21014	
http://www. latlong.net	* Latitude / * Longitude	39° 31' 1.21" N 76° 22' 22.78" W	
	* County	Select a county Harford	
	* ADC Map	Map# Alpha Number Edition	
	No ADC map coordinates required for Garrett, Allegheny, or Somerset counties	0048 E 0004 Edition	
	5 1 · · · · · ·		
	Describe project location i.e. 200 yards NE of Rte 50 and Tempo Roads	From Bel Air Rd, turn west onto Old Joppa Road, the project site is approximately 0.2 miles from the intersection and is on the right.	
Property owner	* Full name	Maryland American Water - Robert F. McIntyre, Operations Manager	
May be different from	* Mailing address	260 Gateway Drive, Suite 17-18B	
Project location address	* City, State Zip	Bel Air, MD 21014-399	
* At least one telephone	Telephone Home	N/A	
	Work	410-838-8404	
	Cell	443-807-0410	
	Email	robert.mcintyre@amwater.com	
Primary contact	* Full name	David H. Graff, Senior Environmental Scientist	
	Company	Gannett Fleming, Inc.	
	* Mailing address	207 Senate Avenue	
* At least one telephone	* City, State Zip	Camp Hill, PA 17011	
	Telephone Work	717-763-7211 x2073	
	Cell	N/A	
	Email	dgraff@gfnet.com	
Project	* My project is Place an 'x' under one selection	Waterway Tidal NonTidal Floodplain Unsure	
	Describe your project	MAWC proposes to construct an off-stream raw water storage reservoir to supply the Winters Run Water Treatment Plant during low flow events in Winters Run and continue to serve the Town of Bel Air.	
hours for the purpose of making obser	rvations of the proposed project site. If this form is	e Maryland Department of the Environment to enter the property during business being submitted by the primary contact and not the property owner, the primary ner and, as the agent, has obtained the property owner's permission for the	

Print Form

Clear Form

Submit by Email

Rev: 130918 cmh

Hockenberry, Samantha <shockenberry@gfnet.com>

Pre-Application Meeting Request

1 message

Hockenberry, Samantha <shockenberry@gfnet.com> To: wetlandspreap.mde@maryland.gov, David Graff <dgraff@gfnet.com> Wed, Nov 11, 2015 at 12:57 PM

Dear MDE Representative,

Please find attached a completed Pre-Application Meeting Request Form.

We are requesting a pre-application meeting to support a Joint Federal and State Permit Application for Marlyland American Water's Bel Air Impoundment Project located in the Town of Bel Air, Harford County, Maryland.

If you have any questions, please feel free to contact me or David Graff (dgraff@gfnet.com). We look forward to your prompt response and working in Maryland.

Thank you,

Samantha

Samantha R. Hockenberry, Environmental Scientist

Gannett Fleming, Inc. | 207 Senate Avenue, Camp Hill, PA 17011

t 717.763.7212 x2144 | shockenberry@gfnet.com

Excellence Delivered As Promised

Gannett Fleming is ISO 9001:2008 Certified.

www.gannettfleming.com | Stay connected: Twitter | Facebook | LinkedIn | YouTube

PRINTING SUSTAINABILITY STATEMENT: Gannett Fleming is committed to conserving natural resources and minimizing adverse environmental impacts in projects. Accordingly, project documentation will be provided in electronic format only unless clients specifically request hard copies. Visit our website to read more about our sustainability commitment.

CONFIDENTIALITY NOTICE: This email and any attachments may contain confidential information for the use of the named addressee. If you are not the intended recipient, you are hereby notified that you have received this communication in error and that any review, disclosure, dissemination, distribution or copying of it or its contents is prohibited.

Pre-App Request Form_MAW Bel Air Imoundment Project.pdf

INFORMATION PACKET - PRE-APPLICATION & SITE VISIT MEETING

Project Name: Bel Air Impoundment Project

Date: February 19, 2016

Meeting Location: On-Site Visit

Winters Run Water Treatment Plant

Town of Bel Air, Harford County, Maryland

Time: 11:00am to 12:30pm

Attendees:

Rob McIntyre	Maryland American Water (MAW) (Applicant)	
Mike Youshock		
Moe Davenport	Harford County Planning & Zoning	
Tony McClune	Harford County Planning & Zoning	
John Roche	MDE Dam Safety	
Lou Parnes	MDE - NTW	
Tamene Dilnesahu	MDE Waterways Construction	
Greg Golden	MDNR	
Steve Elinsky	USACE Regulatory	
Sophia Liskovich, P.E.		
(Assistant Project Manager) David Graff	Gannett Fleming, Inc. (GF)	
(Permit Coordinator)	(Applicant's Agent)	
Samantha Hockenberry		
(Environmental Scientist)		

Introductions

This meeting served as the pre-application meeting for the Bel Air Impoundment Project. The attendees gathered outside the MAW Winters Run Water Treatment Plant (WTP) between 11:00am and 11:15am. Introductions were made and meeting materials were distributed by GF. A sign-in sheet was circulated (see Attachment I).

David Graff (GF) began the meeting and guided the discussion of the project background and walk of the project site.

Main Discussion Points of the Meeting

The main purpose of this project is to construct an off-stream raw water storage impoundment to serve the Town of Bel Air. The proposed project requires a raw water intake structure on Winters Run and associated pipeline crossings beneath Winters Run to connect the existing Winters Run WTP to the off-stream impoundment. To accomplish these goals, the impoundment will be constructed in an upland field currently used as agricultural land. The connecting infrastructure between the impoundment and the WTP is located within the floodplain and will be directionally drilled beneath Winters Run. The new raw water intake structure will be located within Winters Run.

The group viewed the location of the existing and proposed raw water intake structure on Winters Run. Greg Golden (MDNR) inquired about the possibility fish passage and if that was considered as part of the proposed project. D. Graff responded that fish passage was not proposed at this time and not part of the project's objectives. MDNR would review the local waterway maps to inquire what the gains would be if fish passage would be made part of the project. It was uncertain at the time of the field visit, how much of Winters Run would be made accessible if fish passage was provided. D. Graff noted the concern and explained that fish passage will be discussed with the project team.

The Corps of Engineers explained that work proposed below the Ordinary High Water Mark (OHWM) requires federal authorization and that if more than 200 linear feet of Winters Run would be impacted, that tribal coordination with the Delaware Tribe and Nation and other native tribes would be required.

Stream stabilization measures along the banks of Winters Run, specifically along the right bank before reaching the Bel Air Road bridge abutment was viewed as a stream bank in-need of stabilization. D. Graff explained that the bank of Winters Run is in a similar condition throughout the reach and that stabilization efforts outside the immediate work area for intake construction were not part of the proposed project. D. Graff noted the concern and explained that the streambank stabilization measures will be discussed with the project team.

Downstream scour was a concern raised by John Roche of Dam Safety and that part of the proposed project should be to address downstream scour pools and scour issues between the existing intake, areas near and immediately downstream of the Bel Air Road bridge crossing of Winters Run. John took this site visit as an opportunity to conduct his yearly inspection of the existing dam and he noted the scour on his inspection log. D. Graff noted the concern and explained that the downstream scour area will be discussed with the project team.

The group reviewed the location of the raw water pumping station. Tamene Dilnesahu, MDE Waterways Construction pointed out that any new structures proposed in the floodplain would need to meet current standards and subject to floodplain regulations. Tamene also explained that his office will issue a letter requiring that additional technical information be provided within 45 days in order to continue the permit review process. If the project is not able to provide the additional technical review information by that time, the project team will have to send him a formal request to him in order to allow for the permit application to be placed on hold for up to one year.

The group reviewed the proposed crossing of Winters Run where the impoundment would be connected to the water treatment plant. D. Graff pointed out the wooden stakes marked with pink flagging that identified the proposed limits of the work area in reference to project drawings. Directional drill and bore pits were discussed and that open trench was not currently considered. The agencies raised a concern of an inadvertent return of slurry as part of the boring efforts and that an in-stream restriction of March 1 thru May 31 would be expected as a permit condition along with a plan to address any inadvertent returns that could escape into Winters Run. A frack-out contingency plan would also have to be submitted and accepted before the permit will be issued.

The agencies raised a concern about the potential discrepancies in discharge temperatures between the impoundment water temperature and Winters Run depending on the seasonal condition of a discharge. Discharge limits of temperature and other parameters would likely follow existing discharge requirements. S. Liskovich pointed out that normal operation of the impoundment would not involve any discharge into Winters Run. Discharge would only occur during emergency conditions where the spillway would be activated

The Natural Resource District (NRD) boundaries were discussed and explained. The NRD boundaries were provided on a map in the handout materials. Agencies confirmed the interpretation of the NRD boundaries as explained by D. Graff and shown on mapping.

Harford County rejected the effort to individually count trees that would be removed as part of the project and required that a Forest Stand Delineation (FSD) be conducted on the entire parcel. Harford County provided guidance to identify specimen trees or those that are 30 inches or greater in diameter. The County requested a minimum of two plots per forest stand and also a narrative description of the forest stand community and stand breaks. The County provided guidance on considering the land use of the parcel and removing developed areas and agricultural areas from the calculations. The County instructed D. Graff to consider the proposed development and proposed land use change. It is anticipated that this effort will result in American Water not needing to plant trees to mitigate for forest loss.

The group visited the footprint area of the proposed impoundment. D. Graff oriented the group according to project mapping and pointed out the orientation to wetlands, structures and geographic alignment to the water treatment plant. The US Army Corps of Engineers inquired about the wetland delineation methods and requested to return to the site later to review runoff coming from the agricultural fields to determine if they constituted ephemeral channels and may be under the jurisdiction of the Corps. D. Graff and S. Hockenberry explained that the runoff from the field was not mapped as part of the wetland and waterways identification and delineation effort since criteria for jurisdictional waterways was not met by these features.

The group adjourned at 12:30.

Action Items

- 1. Gannett Fleming to conduct a Forest Stand Delineation (FSD).
- 2. Additional project design details are still pending for inclusion in the permit application.
- 3. Corps to confirm that field features were not jurisdictional.
- 4. MDE to investigate fish passage on Winters Run

5. MDE Wasterways Construction to issue a letter requiring additional information within 45-days.

Enclosures

■ Attachment I – Sign-in Sheet

PRE-APPLICATION & SITE VISIT MEETING

Bel Air Impoundment Project February 19, 2016 On-Site Visit – Winters Run Water Treatment Plant Town of Bel Air, Harford County, Maryland 11:00 AM

NAME	AGENCY/COMPANY	PHONE	EMAIL
Mike Youshock	MD American lister	304-446-7824	Mike Youshock @
Doug Graff	Gennett Fleming	7/7- 763- 7211	dgraff@gfnet.com
Pob 1º WYRE	L'S KILIRICON WR	410-838-8464	FULLET, MINTYREG
Samantle Hacken Denny		717-763-7211	shockenberng@firet &
Explice Liskovich	Carrett Flening	443-348-2017	Sliskovich @ Johnet 162
Mae Davenport	Ha (6 Planning 2	416-638-3232	navierdom tymd.gov
Tony McCluse	11 1/10	1.	bart of Conty adjet
JOHN ROCHO	MDE DAM SAFITY	910-537 3552	JOHN. ROCHEC MARYLAND, GEN
-ou Paris	ME- NTW	410-537-3786	Louis BRASE MAYLOW GO
SIEVE FLINGYY	U5ACE	410,962.4503	
MENE DILIVESAHU	MOE	410-537-3803	tamenesdilnesahur mindende
Grea Golden	DNR	40-260-8331	great colden maryland
			1111

1.7

Agency Meeting Minutes, Correspondence, and Dam Safety Submission Summary

November 30, 2015

Maryland Department of the Environment Water Management Administration Regulatory Services Coordination Office 1800 Washington Boulevard, Suite 430 Baltimore, Maryland 21230

RE: JOINT FEDERAL/STATE APPLICATION

> FOR DAM SAFETY AND THE ALTERATION OF ANY FLOODPLAIN, WATERWAY, TIDAL OR NONTIDAL WETLAND IN MARYLAND

Bel Air Impoundment Project

Town of Bel Air, Harford County, Maryland

Attn: Tamene Dilnesah U

Dear Permit Reviewer:

Gannett Fleming, Inc. (Gannett Fleming) on behalf of Maryland American Water (MAW) is submitting for your review the enclosed Joint Federal/State Application for the Bel Air Impoundment Project as referenced above. This application submittal is for both the dam safety permit as well as floodplain and waterways impacts. A request for a pre-application meeting was submitted to your office electronically on November 11, 2015. We look forward to discussing this project with you and will schedule a meeting at your convenience. Design aspects of the project are in-progress. As additional supporting information is made available, we will furnish those details to your office in order to facilitate your review and supplement the application.

Should you have any questions or require additional information, we welcome an opportunity to discuss the project with you. Please contact me at 717-763-7211 ext. 2073 or via email at dgraff@gfnet.com.

Sincerely,

Gannett Fleming, Inc.

David H. Graff, PWS, SCE, CWB

Senior Environmental Scientist

Enclosure: Joint Federal/State Application

Cc: Robert F. McIntyre, MAW Tony Nokovich, P.E. MAW

Sophia Liskovich, P.E., Gannett Fleming

Gannett Fleming, Inc.

Larry Hogan Governor

Boyd Rutherford Lieutenant Governor

Ben Grumbles Secretary

April 4, 2016

Maryland American Water Company 260 Gateway Drive, Suite 17-18B Bel Air Maryland 21014 Attn: Mr. Robert McIntyre

Re: Al Number: 151858

Nontidal Wetlands and Waterways Application Number: 201561803/15-NT-0386

Response Due Date: May 20, 2016

Dear Mr. McIntyre:

The Maryland Department of the Environment ("MDE" or "the Department") received your Joint Federal/State Application for the Alteration of Any Floodplain, Waterway, Tidal or Nontidal Wetland in Maryland ("Application") on December 2, 2015. In your Application, you requested authorization to construct an off —stream raw water storage impoundment to serve the town of Bel Air and surrounding areas in Harford County Maryland. The proposed project requires pipeline crossings on Winters Run and its floodplain to connect the existing raw water intake on Winters Run and the water treatment plant to the proposed impoundment. This letter is to inform you that MDE has determined that your Application is incomplete. Please find attached an explanation of the additional information necessary to complete your Application.

In order for MDE to provide certainty for the regulated community and meet its published turnaround time for your Application, MDE implemented new application review standards on August 1, 2011. These standards, which are enclosed for your information, impose strict deadlines on both MDE and the applicant in order to keep the application process moving forward. In order to complete your Application, you must submit the additional information requested by the Department by May 20, 2016. If the Department does not receive the requested information by the above date or if the information provided is inadequate or insufficient, MDE will deny your Application. The Department would like to help you successfully complete the application review process. If you have any questions or if I can assist you in any way, please do not hesitate to contact me by telephone at (410) 537-3803 or by email at tamene.dilnesahu@marvland.gov Please refer to the above referenced AI Number when corresponding with this office.

Sincerely,

Tamene G. Dilnesahu

Regulatory and Compliance Engineer Waterways Construction Division

immene G Dilneoch

Additional Information Needed to Complete Your Application

The Maryland Department of the Environment (MDE), Non-tidal Wetlands and Waterways Division of the Water Management Administration (WMA) has completed its initial review of Joint Federal/State Application for the alteration of any floodplain, waterway, tidal or non-tidal wetland in Maryland, for the above referenced project. At this time, the application is considered incomplete, because additional information concerning the project is required. Please review the following comments and provide the requested information by May 20, 2016.

- Please provide two sets of full-size detailed construction plans for the project. Plans must include Approved Erosion and Sediment Control Plans, stormwater management practices and Best Management Practices for Working in Nontidal Wetlands, Wetland Buffers, Waterways, and 100-Year Floodplains
- 2. As discussed during the site visit on February 19, 2016 please revise the impacts to the regulated resources and resubmit a revised impact matrix. All impacts to the waterway need to be quantified in linear feet and square feet. Impacts to the floodplain need to be quantified in square feet.
- Please provide detailed stream crossing methods (please specify if you are using open cut or horizontal
 directional drilling). If you are proposing to use horizontal directional drill, please submit a frac-out
 contingency plan for horizontal directional drilling. Also the plan must show the profile of the crossing.
- 4. The routine environmental screening process has determined that this project may potentially impact to Tier II water. Angel Valdez from MDE Science Services Administration is reviewing this project and we will forward her comment to you as soon as we get it from her. In the mean time if you have any question regarding Tire II water please contact Angel Valdez Science Services Administration Maryland Department of the Environment at 410-537-3606 or angel.valdez@maryland.gov
- 5. Provide the hydrologic and hydraulic study analysis for the 2, 10, and 100 year storm events for the proposed structure in 100 year nontidal floodplain. The hydrologic and hydraulic study analysis should demonstrate the proposed structure in 100 year nontidal floodplain will not increase flooding to habitable structures, roads, and adjacent properties.

Processing of this application will continue following receipt of a point by point response to these comments. If you have any questions please do not hesitate to contact me by telephone at (410) 537-3803 or by email at tamene.dilnesahu@maryland.gov

Sincerely

Tamene G. Dilnesahu

Regulatory and Compliance Engineer Maryland Department of the Environment Waterways Construction Division

Jamene G. Dibresahr

1800 Washington Boulevard, Suite 430

Baltimore, MD, 21230-1708

E-mail: <u>tamene.dilnesahu@maryland.gov</u> Phone: (410)-537-3803 Fax: (410)-537-3751

MARYLAND DEPARTMENT OF THE ENVIRONMENT

Water Management Administration • Dam Safety Division 1800 Washington Blvd, Suite 440 • Baltimore, MD 21230-1708 Phone: (410) 537-3538 or 1-800-633-6101 ext.3538 • FAX (410) 537-3553

Larry Hogan Governor Ben Grumbles Secretary

Boyd Rutherford Lieutenant Governor

December 11, 2015

Robert F. McIntyre Maryland American Water Company 260 Gateway Drive, Suite 17-18B Bel Air, MD 21014-399

File No.: **16-OB-0036**

Agency Interest (AI): **150858** Tracking Number: **201561803**

Project Description: Bel Air Impoundment

Assigned Staff: John Roche, P.E.

Dear Mr. McIntyre:

The Department of the Environment, Water Management Administration, Dam Safety Division ("the Department") has received your application for a permit to Construct a new earthen dam adjacent to Winters Run in Bel Air, Maryland. The application has been assigned a file number and staff member as noted above. Should you have questions, please refer to the File Number when responding.

Pursuant to § 5-506, Environment Article, <u>Annotated Code of Maryland</u>, you are required to serve notice of the application to owners of property within 100-year floodplain and contiguous to the parcel on which the dam will be constructed, as well as the downstream property owners affected by the proposed construction. Please submit a copy of the tax map identifying the property owners notified. In addition, you must notify the mayor or chief executive official of each affected City or County. The notice must be sent by certified mail and shall include the location and a description of the project. Attached is a sample letter for your use and a "Certification of Notification" form which must be submitted before your application will be processed. The Department will compile a list of interested persons including those on the "Certification of Notification".

After the application is considered complete in accordance with Code of Maryland Regulations ("COMAR") 26.17.04.13D (1) and (2), the Department shall prepare a notice of completed application that will include your name and address, a description of your project and instructions on how persons may submit comments on your project and how they may request a public informational hearing. This notice will be mailed to the individuals on the interested persons list and will be published for one day in a newspaper of general circulation in your area. You will be billed by the Department for the cost of publication in the local newspaper. Please complete and submit the enclosed "Public Notice Billing Approval Form."

In accordance with COMAR 26.17.04.05, the plans must be prepared by a professional engineer, registered in the State of Maryland, and experienced in dam design and construction. The applicant is also required to hire a professional engineer, referred to as the Engineer-In-Charge, to supervise the

construction in order to assure that the dam is built according to the approved plans and the design assumptions. It is strongly recommended that the design engineer or a qualified member of the design team be retained to supervise the construction. Please have your engineer complete and submit the enclosed affidavit attesting to their qualifications in design and/or construction supervision.

You or your engineer must also prepare a maintenance plan describing the steps to be followed for the continued maintenance of the dam and reservoir during the expected life of the structure. This plan shall describe what work is to be called for at periodic intervals or when necessary to keep the structure in good condition. Among other items it shall address mowing or cutting of brushy growth on the embankment, preventing erosion or gullying of embankment surfaces, clearing of toe drains, removing accumulated trash and debris, protecting against rust and spalling, and exercising valves or other mechanical equipment. The description of this program shall be submitted to the Department for approval and will be included as a condition of the construction permit.

For dams classified as High or Significant Hazard, you or your engineer must also submit an Emergency Action Plan ("EAP"), for evacuation of downstream residents and road closures downstream of the dam which would be inundated should the dam fail.

Attached you will find a "Memorandum of Land Restrictions" that will alert potential subsequent owners of the dam and the future legal and maintenance responsibilities associated with the dam. Please complete the first page, sign the memorandum and submit a check, payable to the Clerk of the Court for Harford County to cover the land recordation fees. Please contact the Clerk of the Court for the fee amount. The Department will record the document. The completed document and the recording fee must be received prior to issuance of a permit.

You will also be required to post a construction bond, irrevocable letter of credit, or other security acceptable to the Department to assure that funds are available to complete the construction of the proposed project and for continued maintenance of the project throughout the life of the structure.

A decision will be made on your application after the Department has received all the necessary supporting information and after the public informational hearing, if requested, has been held. A reproducible set of the construction plans ("mylars") must be submitted for approval prior to the issuance of the permit. Five copies of the final approved construction plans and specifications must be submitted. You and your engineer each will receive a copy of the approved plans with an original/copy of the permit.

For your information, a permit-processing outline is enclosed. If you have any questions or require any additional information, please contact John Roche, P.E. of the Dam Safety Division at (410) 537-3552, email John.Roche@maryland.gov, or call me at (410) 537-3538.

Sincerely,

Hal Van Aller, P.E., Chief Dam Safety Division

Enclosures

cc: David Graff, Gannett Fleming, Inc. w/enclosures

John Roche, P.E. w/enclosures

Tamene Dilnesahu, MDE Wetlands and Waterways

Excellence Delivered As Promised

Rutherford Plaza 7133 Rutherford Road, Suite 300 Baltimore, MD 21244

Office: (443) 348-2017 Fax: (410) 298-3940

May 17, 2016

Maryland Department of the Environment 1800 Washington Blvd. Suite 430 Baltimore MD 21230 Attention: Tamene Dilnesahu Regulatory Compliance Engineer

RE: AI Number: 151858

Nontidal Wetlands and Waterways Application Number: 201561803/15-NT-0386

Bel Air Impoundment Project

Dear Mr. Dilnesahu,

This letter is in response to the MDE letter dated April 4, 2016. The Joint Permit Application (JPA) for the Bel Air Impoundment Project was submitted in November 2015, due to a permit application submission date dictated by a consent decree. The design for this project is currently at the 50% completion mark and therefore, the missing JPA information is not yet available. Due to these circumstances, Gannett Fleming, on behalf of Maryland American Water, requests that MDE leave the application 201561803/15-NT-0386 open for a year to enable the completed JPA package to be submitted for review.

If you have any questions or need additional information, please feel free to contact me at sliskovich@gfnet.com or 443-348-2017.

Sincerely,

Gannett Fleming Inc.

CC: Mr. Tony Nokovich, American Water Mr. David Graff, Gannett Fleming, Inc.

David Graff

From: David Graff

Sent: Wednesday, December 09, 2015 3:30 PM

To: 'steve.elinksy@usace.army.mil'

Cc: Sophia Liskovich; Dennis Funk; Cari Beenenga

Subject: Bel Air Impoundment Project

Steve,

Thank you for calling this morning. We look forward to working with you on this project.

At this time we would like to request a temporary suspension of the Corps' review of the permit application until we can provide the final design elements. I will contact you again when we are ready to provide additional details which should be within a few weeks. My understanding is that our review clock will be stopped and will start again when we submit the additional items.

Thanks,

Dave

David H. Graff | Project Manager | Sr. Environmental Scientist

Gannett Fleming, Inc. | 207 Senate Avenue, Camp Hill, PA 17011

t 717.763.7212, extension 2073 | c 717.342.1418 | dgraff@gfnet.com

PRINTING SUSTAINABILITY STATEMENT: Gannett Fleming is committed to conserving natural resources and minimizing adverse environmental impacts.

CONFIDENTIALITY NOTICE: This email and any attachments may contain confidential information for the use of the named addressee. If you are not the intended recipient, you are hereby notified that you have received this communication in error and that any review, disclosure, dissemination, distribution or copying of it or its contents is prohibited.

Hockenberry, Samantha

From: Liskovich, Sophia Z.

Sent: Thursday, July 28, 2016 10:44 AM

To: Graff, David H.

Cc: Hockenberry, Samantha

Subject: FW: Maryland America Water Bel Air Impoundment and Intake Project

For your information.

Cal me if you want to discuss.

Sophia Liskovich, PE Gannett Fleming, Inc. T: 443-348-2017 ex. 8337

----Original Message----

From: Elinsky, Stephen M (Steve) NAB [mailto:Steve.Elinsky@usace.army.mil]

Sent: Thursday, July 28, 2016 8:58 AM

To: Liskovich, Sophia Z. <sliskovich@GFNET.com>

Subject: RE: Maryland America Water Bel Air Impoundment and Intake Project

Good morning Sophia,

Other than the modified plans, no further action is necessary. Once I have received them along with your request to reactivate the Corps review, I'll get going with the authorization. Please remember that the current general permit will expire at the end of September and that the authorization for any project that is not under contract or construction will also expire. To get around this, please request the reactivation of the Corps review on or after October 1st so it can be authorized under the new general permit. That authorization would be viable for a period of 5 years.

Have a good day.

-Steve

Steve Elinsky Biologist

U.S. Army Corps of Engineers - Baltimore District Regulatory Branch - Maryland Section Northern

410.962.4503 (Desk) 410.935.3614 (Cell)

----Original Message-----

From: Liskovich, Sophia Z. [mailto:sliskovich@GFNET.com]

Sent: Tuesday, July 26, 2016 3:03 PM

To: Elinsky, Stephen M (Steve) NAB <Steve.Elinsky@usace.army.mil>

Subject: [EXTERNAL] RE: Maryland America Water Bel Air Impoundment and Intake Project

Hello Steve,

I apologize for the delay in getting back to you. Yes, thankfully we were able to greatly reduce all impacts to the waters. Do we need some sort of letter from you stating that there are no impacts to phase 1A (therefore that can move forward)? We are currently putting together the official permit modification request with the appropriate drawings, revised impacts, and the impact plates for phase 1A as well as phase 1B. We are looking to have that submitted in early August.

If there is a specific GP form that we have to complete after October 1st, would you be able to send me a copy?

Thank you for all of your assistance, Sophia

Sophia Liskovich, PE Gannett Fleming, Inc. T: 443-348-2017 ex. 8337

----Original Message----

From: Elinsky, Stephen M (Steve) NAB [mailto:Steve.Elinsky@usace.army.mil]

Sent: Monday, July 25, 2016 7:55 AM

To: Liskovich, Sophia Z. <sliskovich@GFNET.com>

Subject: RE: Maryland America Water Bel Air Impoundment and Intake Project

Good Morning Sophia,

Wow, the proposed impacts are low. Nice job with the avoidance and minimization. The project qualifies for authorization under Category A of the current general permit as it would with the next one. As I indicated, the current GP expires on September 30th. Since Phase 1A has no impacts perhaps the permitting required for Phase 1B could wait until after October 1st.

Please let me know what you think.

Thanks,

Steve Elinsky Biologist

U.S. Army Corps of Engineers - Baltimore District Regulatory Branch - Maryland Section Northern

410.962.4503 (Desk) 410.935.3614 (Cell)

----Original Message----

From: Liskovich, Sophia Z. [mailto:sliskovich@GFNET.com]

Sent: Friday, July 22, 2016 10:42 AM

To: Elinsky, Stephen M (Steve) NAB <Steve.Elinsky@usace.army.mil>

Subject: [EXTERNAL] RE: Maryland America Water Bel Air Impoundment and Intake Project

Hello Steve,

Our revised stream impact numbers are: 2,800 sq. ft and 97 linear feet of disturbed area. It seems as though we are way under the 5,000 sq. ft and 200' If criteria. Please let me know the best way to move this forward with the Corps.

Thank you

Sophia Liskovich, PE Gannett Fleming, Inc. T: 443-348-2017 ex. 8337

----Original Message-----

From: Elinsky, Stephen M (Steve) NAB [mailto:Steve.Elinsky@usace.army.mil]

Sent: Thursday, July 21, 2016 3:22 PM

To: Liskovich, Sophia Z. <sliskovich@GFNET.com>

Subject: RE: Maryland America Water Bel Air Impoundment and Intake Project

Sophia,

Please don't forget to re-quantify the new impact numbers.

Have a good night.

-Steve

Steve Elinsky Biologist

U.S. Army Corps of Engineers - Baltimore District Regulatory Branch - Maryland Section Northern

410.962.4503 (Desk) 410.935.3614 (Cell)

----Original Message-----

From: Liskovich, Sophia Z. [mailto:sliskovich@GFNET.com]

Sent: Tuesday, July 12, 2016 3:29 PM

To: Elinsky, Stephen M (Steve) NAB <Steve.Elinsky@usace.army.mil>

Subject: [EXTERNAL] RE: Maryland America Water Bel Air Impoundment and Intake Project

Hello Steve,

Thank you for your voicemail. The previous email can be found below.

A JPA application was actually submitted back in November 2015. I have attached the application portion showing the impacts. These have to be updated but should give you a good idea of the impacts (for example we have reduced the permanent stream impact).

If you have any questions or would like additional information please let me know. Thank you for your help.

Sophia Liskovich, PE
Gannett Fleming, Inc.
T: 443-348-2017 ex. 8337
From: Liskovich, Sophia Z. Sent: Monday, July 11, 2016 12:36 PM
To: Elinsky, Steve NAB <steve.elinsky@usace.army.mil></steve.elinsky@usace.army.mil>
Subject: Maryland America Water Bel Air Impoundment and Intake Project
Hello Steve,
I wanted to follow up on the email Tamene Dilnesahu from MDE sent and copied you on July 5th which I have also attached to this email. The project team for the Bel Air Impoundment and Intake project spoke to Tamene about the potential for splitting of the contract. In the consent decree between American water and MDE, the complete project has to be completed and the impoundment able to take water within 18 months of all permits received. Because of the much greater environmental impacts in the proposed phase 1 B (see attached) which involves the actual stream intake, and pump station and control building within the floodplain and the longer construction duration required for the impoundment itself, the team was exploring the possibility to permit the project in two phases as to give a "head start" to the impoundment project construction. In additional to the additional permitting iterations that may be required for phase 1B, the current state of the design of the impoundment, phase 1A) is ahead of the aspects in phase 1B.
As you can see from the attached email, Tamene has agreed to splitting up the permit as long as the total project stays below the public notice impact number. Because MDE is only half of the permission needed regarding the JPA, I wanted to reach out to you to determine if the Corps of Engineers would be open to permitting this project as a phase 1 and phase 2.
Please let me know your thoughts. Feel free to give me a call to discuss if that would be more helpful. In addition, I currently have a 70% drawings set for the impoundment and 60% set for the intake, pump station, and control building If you would be interested in seeing the current state of design I would be more than happy to share that with you (either electronically or hard copy).

Thank you very much,

Sophia Liskovich, PE

Gannett Fleming, Inc. T: 443-348-2017 ex. 8337

MARYLAND AMERICAN WATER COMPANY BEL AIR IMPOUNDMENT AND WINTERS RUNS INTAKE PROJECT TOWN OF BEL AIR, HARFORD COUNTY, MARYLAND

Summary of Reports and Documents Submitted to MDE Dam Safety

	Report/Title Description	Date Submitted
1	Preliminary Dam Design Summary	November 2015
2	Dam Breach Analysis	April 2016
3	Proof of Dam Safety Adjacent Property Owner Notification	April 19, 2016
4	70% Dam Safety and Design Report	July 8, 2016
5	Detail of Toe Drain (for review/approval)	July 14, 2016

Chapter 2

- 2.1 Dam Design Criteria Technical Memorandum
- 2.2 Project Plans Phase IA
- 2.3 Project Plans Phase IB
- 2.4 Frac-Out Plan Phase IB
- 2.5 Floodplain Analysis

2.1 Dam Design Criteria Technical Memorandum

PRELIMINARY DAM DESIGN SUMMARY

FOR THE

BEL AIR WATER SUPPLY SYSTEM

Prepared for

MARYLAND AMERICAN WATER COMPANY

Contract Task Order No. MD-15-GF-3

Prepared by

HARRISBURG, PENNSYLVANIA

GF Project No. 059267

NOVEMBER 2015

1.0 Background and Objectives

Gannett Fleming was authorized by Maryland American Water Company to evaluate an off-stream storage impoundment along Winters Run to serve as an emergency water supply for the existing water system serving the Town of Bel Air, Maryland. This concept will ensure a reliable source of raw water for the system during periods of drought.

The Bel Air water system serves primarily the town of Bel Air in Harford County, Maryland. The system is operated by the Maryland American Water Company (MAWC). The water system consists of the Winters Run Water Treatment Plant (WTP) that primarily treats raw water from Winters Run. Two existing groundwater wells, the Winters Run Well and the Bynum Well, also provide raw water to the distribution system.

In addition to the raw water supply, the Bel Air system has a finished water supply available from the Harford County water system. MAWC constructed a metered connection to the County system on MacPhail Road and has purchased a supply capacity for up to 0.5 MGD. The County bills the Town for the actual water used at a bulk water rate. This supply is used to supplement the supply from the WTP and the wells.

The primary water supply for the system is Winters Run, which is currently permitted for a 1.4 MGD annual average withdrawal and a 1.7 MGD maximum daily withdrawal. The current withdrawal permit also includes a restriction that only allows MAWC to withdraw from the stream if the passing flow is 6.07 MGD or greater. Thus, during periods of low stream flow, the primary raw water supply to the system is either restricted or unavailable.

During such periods, the Bel Air system has historically relied on the wells and the Harford County supply to meet the system demand. This has required more than the contractual 0.5 MGD of supply from the County. With recent changes in water supply planning for the region, Harford County has identified long-term water supply shortfalls, and so the availability of surplus County water in excess of the contracted supply is no longer a reliable supply option for the Bel Air system.

To address these concerns, MAWC is constructing an off-stream raw water storage impoundment which will provide a reliable raw water supply source when water from Winters Run, the wells, and the County is not sufficient to meet demand. The objective of this memorandum is to summarize the preliminary dam embankment and spillway designs. The design information included in this document is preliminary and will be subject to revision and refinement in subsequent design phases.

2.0 Summary of Proposed Design

The proposed impoundment will be located on a parcel of land immediately upstream of the Winters Run Water Treatment Plant. The site is adjacent to the Winters Run stream east of the Bel Air Bypass. The proposed pump-storage impoundment will allow raw water to be pumped from Winters Run during high flows, and stored in the impoundment until needed during low flow, drought, or other emergency events. The groundcover at the site consists mostly of farmland. The site also has some environmental features along the eastern portion of the property including a reforestation zone. The proposed impoundment at this site is located such that it will not impact these features, but the discharge channel and supply piping may impact approximately 0.1 acres of the 2.67 acre reforestation area. We will work with regulating authorities to identify an alternate reforestation area on the property to account for these limited impacts.

There are four main components of the proposed pump-storage facility: 1) the impoundment embankment, 2) the control tower, 3) the raw water transmission pipeline and 4) the Winters Run intake structure and pumping station. The raw water from Winters Run will enter the intake structure and be pumped into the raw water transmission pipeline, which will discharge into the impoundment through the control tower. The control tower will also include intake portals for releasing water back into the raw water pipeline to the water treatment plant during periods of withdrawal. A plan of the proposed impoundment and its appurtenant features is included as Attachment A. A rendering of the impoundment is included as Attachment B.

Per Maryland Dam Safety guidance on hazard classification of state regulated dams, it is anticipated that the impoundment will be either a High Hazard or Significant Hazard Potential structure. A breach analysis will be performed to determine the appropriate hazard classification of the structure.

2.1 Impoundment Storage

In order to simulate daily operation of an off-line impoundment at Bel Air over an extensive period of record, a custom computer model of the impoundment and supply system was programmed using Microsoft Visual Basic Express software. The purpose of this model was to simulate the operation of the proposed impoundment and supply system for an extended period of record to estimate water availability during drought events under proposed conditions. The model was used to estimate the required storage volume, establish appropriate flowby and withdrawal constraints, and evaluate impacts of withdrawals on the downstream users and ecosystem.

Pending MDE approval of the recommended water appropriation and flowby requirements, the total storage of the proposed impoundment will be equal to 90 million gallons (276 acre-feet). This includes a 10 percent dead storage volume for the purpose of maintaining aquatic habitat within the impoundment during extreme droughts and an additional 2 percent sediment storage volume. It also assumes that during the drought of record, the water system intake would be able

to capture 67 percent of allowable withdrawals from Winters Run when flows in the stream intermittently spike above the permitted flowby requirement. A breakdown of the impoundment storage is provided in Table 1.

Table 1. Breakdown of Impoundment Storage

	Type of Storage	Volume (MG)	Percent of Total (%)
USABLE	Minimum Storage Required to Meet Demand ¹	70.0	77.8%
USA	Additional Storage Required Assuming 67% Capture Efficiency ²	9.2	10.2%
ABLE	Dead Storage to Maintain Aquatic Habitat and Water Quality	9.0	10.0%
UNUSABLE	Sediment Storage	1.8	2.0%
	TOTAL STORAGE	90.0 MG	100.0%

¹This is the minimum volume required to meet demand during the drought of record as estimated by an 88-year computer model simulation of the Bel Air raw water supply system.

2.2 Embankment Design

As shown on Attachment A, the impoundment is cut into the hillside with depths of excavation ranging between 20 feet and 30 feet. The embankment will be constructed of on-site soils, and the excavation and fill quantities will be balanced such that there will be no need to spoil material. Based on the current geotechnical investigations, the embankment and impoundment bottom will require a liner system to control seepage. It is anticipated that the liner system will be exposed on the upstream slope of the embankment. Anchoring of the liner system to the upstream slope and drainage beneath the liner will be included in the design as appropriate. Table 2 summarizes the preliminary design of the embankment.

²During the drought of record, the model simulation indicates that a total of 27.7 MG was withdrawn from Winters Run to meet demands or partially refill the impoundment. To account for operational inefficiencies and uncertainties, only 67 percent (or 18.5 MG) of this water was assumed to be successfully withdrawn from Winters Run and the required storage was increased accordingly.

Table 2. Embankment Design Summary

Parameter	Value	
Maximum Height of Dam	51 feet	
Length of Embankment	2,300 feet	
Crest Width	20 feet	
Upstream Slope	2.5H:1V	
Downstream Slope	3H:1V	
Top of Dam Elevation	259.0 feet (NAVD 88)	
Normal Pool Elevation	256.0 feet (NAVD 88)	
Normal Pool Storage	90 million gallons	
Volume of Excavation	225,000 cubic yards	
Volume of Fill	225,000 cubic yards	

2.3 Control Tower Design

The control tower will most likely be a free-standing reinforced concrete riser structure approximately 50 feet high with an operating platform and multiple interior chambers. The riser will provide the ability to both fill and withdraw water from the impoundment. The riser will also serve as an auxiliary spillway with a weir opening to discharge excess water. Although the impoundment does not have any contributing drainage area, this spillway serves as a safeguard against overtopping due to extreme precipitation events centered over the impoundment or accidentally over-filling the impoundment. The spillway crest will be higher than the normal pool elevation and will activate during events larger than the 24-hour, 100-year precipitation event, thus restricting discharge from the impoundment to Winters Run except during extreme events. The spillway will be sized to pass the Probable Maximum Precipitation with one foot of freeboard.

The raw water transmission pipelines and outlet pipe will be supported on a concrete cradle and run parallel through the dam embankment. At the toe of the dam embankment, the raw water transmission pipes will divert away from the outlet pipe towards the pumping station and water treatment plant. The outlet pipe will exit into a standard reinforced concrete impact basin located near the toe of the dam embankment, where an excavated channel lined with riprap will connect the impact basin to the stream.

ATTACHMENT B

Rendering of Proposed Impoundment

E Gannett Fleming

EXHIBIT 5

2.4 Frac-Out Plan – Phase IB

HORIZONTAL DIRECTIONAL DRILLING CONTINGENCY PLAN

If a release of bentonite is detected, call Rob McIntyre immediately at (410) 838-8404

1.0 INTRODUCTION

Maryland American Water Company (MAWC) is proposing to construct a 16 inch raw water transmission pipeline from its existing water treatment plant (WTP) site to a proposed 90 million gallon raw water storage impoundment. The existing WTP is situated on the east side of Winters Run on Bel Air Road in Bel Air, Harford County, Maryland. The proposed impoundment will be situated on the west side of Winters Run just west of the existing WTP site. The Winters Run crossing will be accomplished using horizontal directional drilling (HDD) methods and materials.

The purpose of this document is to provide guidance in order to eliminate or minimize any adverse effects from directional drilling fluid seepage or drill failure.

2.0 ROLES & RESPONSIBILITIES

The following is a general delineation of the roles and responsibilities of representatives of MAWC and the HDD Contractor:

- MAWC shall only use a firm who specializes in HDD to perform the proposed stream and wetland crossing.
- MAWC is responsible for the supervision of the drilling contractor and retains the right to shut down operations.
- MAWC will assign a Resident Project Representative (RPR) and a Project Manager (PM) who will act on behalf of MAWC for the project.
- The HDD Contractor will assign a Project Supervisor (PS) who will be responsible for on-site visual monitoring of the construction area during construction operations.
- The PS shall walk the construction area at least every four hours during drilling operations, where access is permissible, to visually monitor for inadvertent releases.
- HDD Drilling Crew
- If a loss of circulation is detected, the PS shall immediately notify MAWC's Resident Project Representative (RPR) and Project Manager (PM).
- PS shall perform visual inspections of the construction area until the pressure of the drilling fluid has stabilized and the PS has confirmed that surface seepage has not resulted.

2.1 PRELIMINARY PREPARATIONS

Prior to the start of drilling operations, the HDD Contractor will do the following:

- Install sediment barriers (straw bales and silt fences) between the bore pits and nearby sensitive resources to prevent released material at the bore pits from reaching the resource.
- Conduct on-site briefings with all field personnel to identify and locate sensitive resources at the site.
- Brief all field employees on proper protocol for notification in the event a frac-out occurs.

2.2 FRAC-OUT DETECTION

The most obvious signs of a frac-out are surface seepage or loss of circulation/pressure of the drilling fluid. One of the functions of the drilling fluid is to seal the hole to maintain the downhole pressure. The loss of the returning fluid is a sign that pressure is not being contained in the drill hole and surface seepage is occurring outside the hole. Providing adequate boring depth for the installation commonly reduces this potential. In some cases, drilling fluid seepages can be caused by pre-existing fractures or porous layers in the geological strata, even if the down hole pressures are low.

If there is a reduction in the quantity of drilling fluid returning to the drilling site (i.e., loss of circulation), this could be a warning sign. However, some loss of drilling fluid is also normal in the drilling process. There can be instances during the drilling process when a small layer of loose sand, a small gravel layer or a small rock fracture is encountered. These occurrences will require minimal, additional drilling fluids to fill in the voids. Consequently, a small drilling fluid loss in and of itself is not an indication of a potential fracout condition. It is the loss of drilling fluid in combination with other factors, which may indicate a potential frac-out condition. For example, if there is a loss of drilling fluid and the return of cuttings do not show a large quantity of gravel that could indicate a loss of containment pressure within the hole.

Early detection and prevention will be the key elements in implementing this plan successfully. The HDD crew will monitor the drill rig's on board gauges at all times. Drill rates and pump pressures will be monitored and controlled within acceptable parameters to ensure that drilling mud is ultimately controlled within HDD standards. The crew will also make multiple visual inspections along the bore path each day looking for early signs of frac-outs or drilling fluid loss on the surface.

2.3 GENERAL PROCEDURES FOR DRILLING

Drill rates and pull speeds will be controlled at all times to allow for pressure equalization within the bore during drilling and pull back. This will allow the drill mud to stay within the bore itself without being pushed into the surrounding soil, wetlands and/or water. By controlling drilling operations in all phases from drilling through final pipe installation, frac-outs should also be controlled.

2.4 General Corrective Action

In the event that a frac-out is detected, drilling operations will be immediately stopped and the drilling crew will take immediate corrective action to stop the loss of fluids, as follows:

If the frac-out is terrestrial:

- 1. Isolate the area with hay bales, sand bags, silt fence and/or a vent hole*.
- 2. Mobilize a vacuum trailer to the frac-out location to remove any drilling fluid lost on the surface.
- 3. Once the fluid has been safely contained and/or cleaned up, drilling operations can continue.
- 4. If the frac-out continues, isolate and excavate a vent hole* at the frac-out location and continue to remove fluid with the vacuum trailer.
- 5. When drilling operations are complete, the area of the disturbance can be restored with seed and straw.
- 6. Documentation of corrective measure must be made and maintained by the contractor and provided to MAWC.
- 7. The Contractor must follow any special instructions from MAWC's Resident Project Representative (RPR).
 - * A vent hole is viable option for controlling fluid loss in some situations. A vent hole is a small excavation either on the drill string itself or at the spot of the frac-out. The Vacuum trailer can then be used to remove the fluid from the vent hole.

If the frac-out is aquatic (under water):

- 1. Monitor the frac-out to determine if the drilling fluid congeals. (Bentonite will usually harden, effectively sealing the frac-out location)
- 2. If the drilling fluid congeals, take no further action that would potentially suspend sediments in the water column.
- 3. If the frac-out continues, deploy a boom to contain the frac-out and prevent sediment suspension in the surrounding water column until the Bentonite can congeal.
- 4. Documentation of corrective measure must be made and maintained by the contractor and provided to MAWC.
- 5. The Contractor must follow any special instructions from MAWC's Resident Project Representative (RPR).

2.5 Response and Reporting Personnel

If a release of bentonite is detected, the drilling contractor will immediately notify MAWC's RPR. The RPR has been given "stop work authority" by MAWC and his/her instructions must be followed. The RPR will immediately notify Rob McIntyre, MAWC Project Manager who will be responsible for notifying the Maryland Department of the Environment at (410) 537-3000 and U.S. Army Corps of Engineers, as may be necessary for compliance with the Section 401 Non-Tidal Wetlands and Waterways and Section 404 authorizations.

2.6 Response Equipment

The drilling contractor will be responsible for having all response materials and equipment required for containment/remediation during a frac-out on site at all times during the drilling process. Such materials will include at a minimum:

- Vacuum trailer
- Silt fence
- Straw bales
- Sand Bags
- Hand excavation equipment
- Vacuum excavation equipment (vacmasters system 4000)
- Trash pumps
- Silt bags
- Boom

2.7 Follow-Up

After the frac-out has been contained, the drilling contractor will make every effort to determine why it occurred. Once the cause of the frac-out has been determined, measures will be developed to control the factors causing it and to minimize the chance of recurrence. Developing the corrective measure will be the responsibility of the drilling contractor.

2.5 Floodplain Analysis

FLOODPLAIN IMPACT ANALYSIS

FOR THE

BEL AIR WATER SUPPLY SYSTEM

Prepared for

MARYLAND AMERICAN WATER COMPANY

Prepared by

GF Project No. 059267

AUGUST 2016

1.0 Background and Objectives

The Bel Air water system serves the town of Bel Air in Harford County, Maryland. The system consists of the Winters Run Water Treatment Plant that treats raw water from Winters Run and other sources. It is operated by the Maryland American Water Company (MAWC).

Gannett Fleming was authorized by MAWC to design an off-stream storage impoundment along Winters Run to serve as an emergency water supply for the existing water system serving the Town of Bel Air, Maryland. This impoundment will ensure a reliable source of raw water for the system during periods of drought.

The new impoundment will include multiple appurtenances which are located within the existing regulatory floodway (See Attachment A). New features associated with the impoundment that encroach on the floodway include a plunge pool and discharge channel, water intake, and multiple concrete vaults to house meters, pumps, and other equipment that are used in the transfer of water from the impoundment to the water treatment plant. A hydraulic analysis of the floodplain at Winters Run was performed to determine if these encroachments would increase the base flood elevations and extents on Winters Run as defined by the effective Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS). The purpose of this memorandum is to summarize the findings this analysis.

2.0 Effective Flood Insurance Study

In April 2016, a FEMA FIS was published delineating the 100-year floodplain and floodway for the Town of Bel Air. Figure 1 shows an excerpt from the FEMA Flood Insurance Rate Map (FIRM) for Winters Run in the vicinity of the proposed impoundment and associated water treatment plant additions. In the effective FEMA study, base flood elevations were determined using the U.S. Army Corps of Engineers' River Analysis System (HEC-RAS v4.1) software. A copy of the effective HEC-RAS model was obtained from FEMA as part of this effort.

The proposed project is located adjacent to a reach in which FEMA established base flood elevations through detailed study. The FEMA study includes hydrologic and hydraulic analyses and mapping of the floodplain and floodway. In accordance with FEMA regulations and Harford County ordinances, any encroachment within the floodway cannot cause an increase in base flood elevation of 0.01 feet or greater. For encroachments within the floodplain (Zone AE) outside of the floodway, FEMA allows an increase in the base flood elevation of up to 1.0 feet.

As shown in Attachment A, new features associated with the impoundment that encroach on the floodway are the plunge pool and discharge channel located between the spillway conduit outlet and Winters Run near the downstream toe of the impoundment; a new raw water intake located upstream of the existing low-head diversion dam across Winters Run; a recycle meter vault; a raw water pump station vault; and an impoundment supply meter vault. All of these features will be constructed within the regulatory floodway and are, therefore, subject to the "no rise" in water surface elevation requirement.

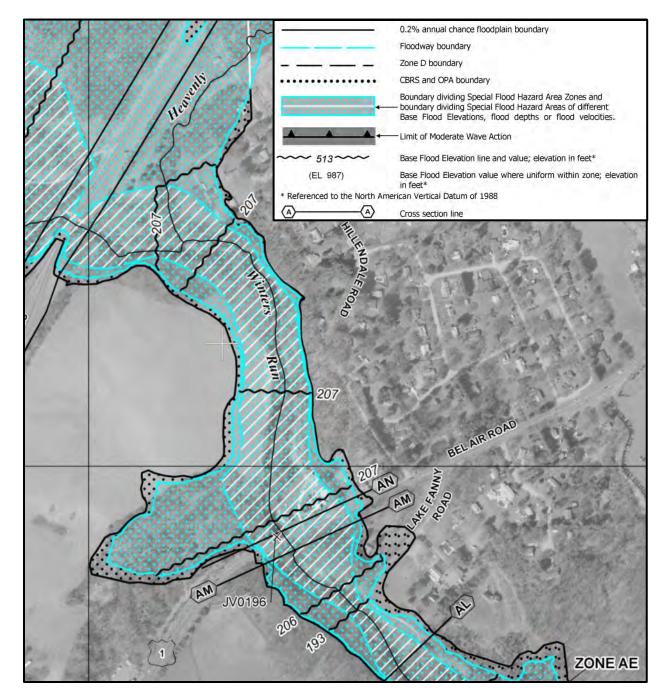


Figure 1. Excerpt from FEMA FIRM in Vicinity of Proposed Bel Air Impoundment

3.0 Hydraulic Analysis

3.1 Hydraulic Model Development

Hydraulic analyses were performed to determine the impact that the proposed project will have on the water surface elevations in Winters Run during the regulatory 100-year flood. The original effective FEMA HEC-RAS model for Winters Run served as the basis for the floodplain analysis. FEMA discharge estimates from the effective study were used in the HEC-RAS model. No new hydrologic analyses were completed as part of this study.

Because the effective model only includes three cross sections within the project limits (Stations 23189, 23542, and 23954), model data was supplemented with 8 additional cross sections between river stations 23189 and 23954 based upon project survey and the best available LiDAR elevation data. HEC-RAS cross sections in the vicinity of the proposed impoundment are shown in Figure 2. All elevations in the HEC-RAS model developed for this project are referenced to NAVD88.

Manning's roughness coefficients and ineffective flow areas were applied to the new cross sections in a manner that was consistent with the effective FEMA model. As a result, roughness values of 0.035 for the channel and 0.046-0.120 for the overbank areas were assigned to the new cross sections.

Three new simulations were run in the HEC-RAS model: existing conditions, temporary conditions, and proposed conditions. The "existing conditions" simulation represents the study reach of Winters Run without any of the construction or modifications currently proposed by MAWC. The "temporary conditions" simulation was modeled to estimate the flooding impacts of a large sediment trap that will be installed as a temporary means of erosion and sediment (E&S) control during construction of the impoundment. The "proposed conditions" simulation represents the study reach with all permanent proposed modifications.

Where cross-sections extended through proposed structures at the water treatment plant, blocked obstructions were modeled in the proposed geometry. The existing low-head diversion dam was also added as a blocked obstruction to all geometries since it has a significant impact on the hydraulics of the area of interest but was not included in the effective FEMA analysis. Differences in model geometry between the existing, temporary, and proposed condition simulations are listed in Table 1.

3.2 Analysis Results

Table 1 summarizes the model results for the 100-year peak flow for existing conditions versus proposed conditions as well as existing conditions versus temporary conditions. HEC-RAS model output for all three simulations is included as Attachment B.

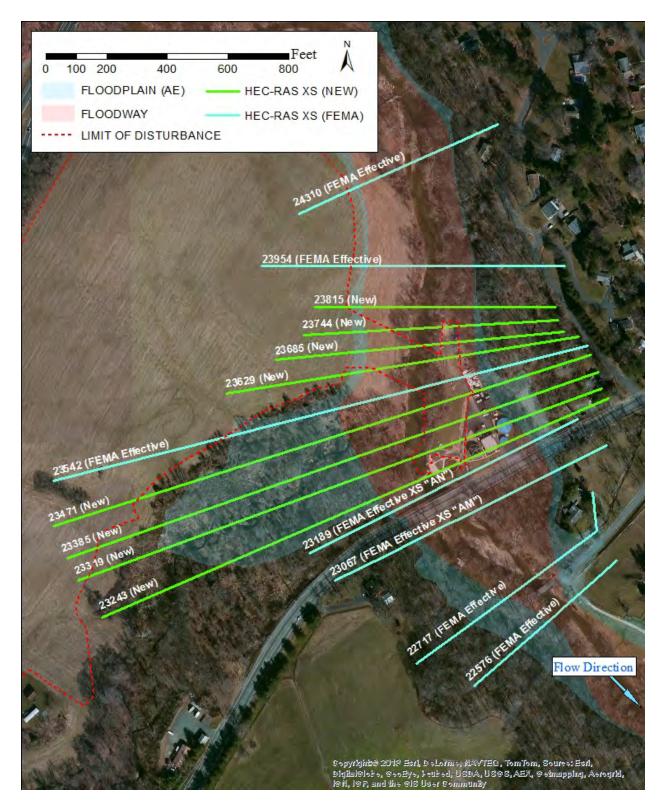


Figure 2. HEC-RAS Cross Section Location Map

Table 1. Summary of HEC-RAS Analysis Results

HEC-RAS Station	100)-year WSE (fo	eet)	100-yea Differen	
	Existing	Temporary	Proposed	Temporary minus Existing	Proposed minus Existing
23954 (FEMA)	206.970	206.987	206.970	0.017	0.000
23815 (New)	206.902	206.919	206.902	0.017	0.000
23744 (New) Proposed Stilling Basin	206.849	206.866	206.848	0.017	-0.001
23685 (New) Proposed Discharge Channel; Temporary Sediment Trap	206.829	206.915	206.837	0.086	0.008
23629 (New) Proposed Outlet of Discharge Channel	206.837	206.840	206.841	0.003	0.004
23542 (FEMA)	206.963	206.963	206.965	0.000	0.002
23471 (New)	206.975	206.975	206.977	0.000	0.002
23385 (New) Proposed Raw Water Pump Station and Impoundment Supply Meter Vaults	206.894	206.894	206.895	0.000	0.001
23319 (New) Proposed Intake and Recycle Meter Vault	206.906	206.906	206.910	0.000	0.004
23243 (New) Existing Low-head Diversion Dam	206.861	206.861	206.861	0.000	0.000
23189 (FEMA) Immediately Upstream of Bel Air Road	206.859	206.859	206.859	0.000	0.000

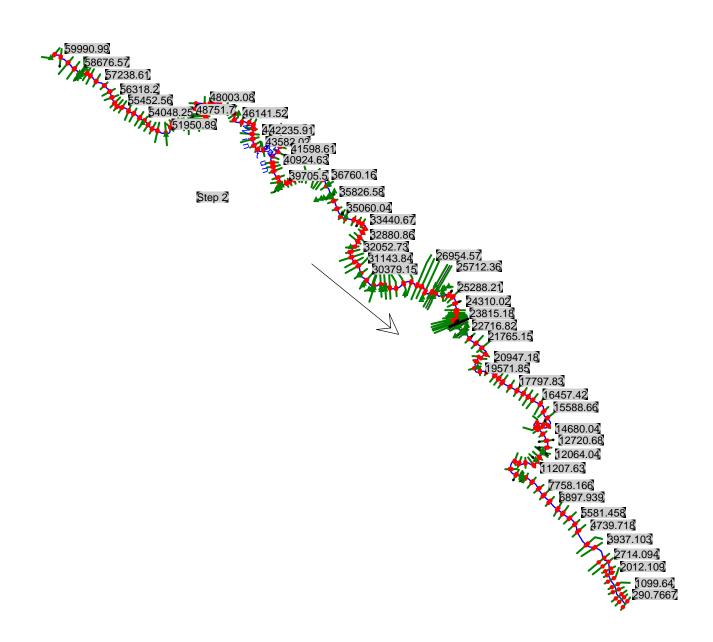
^{*}Red text denotes increases in water surface elevation.

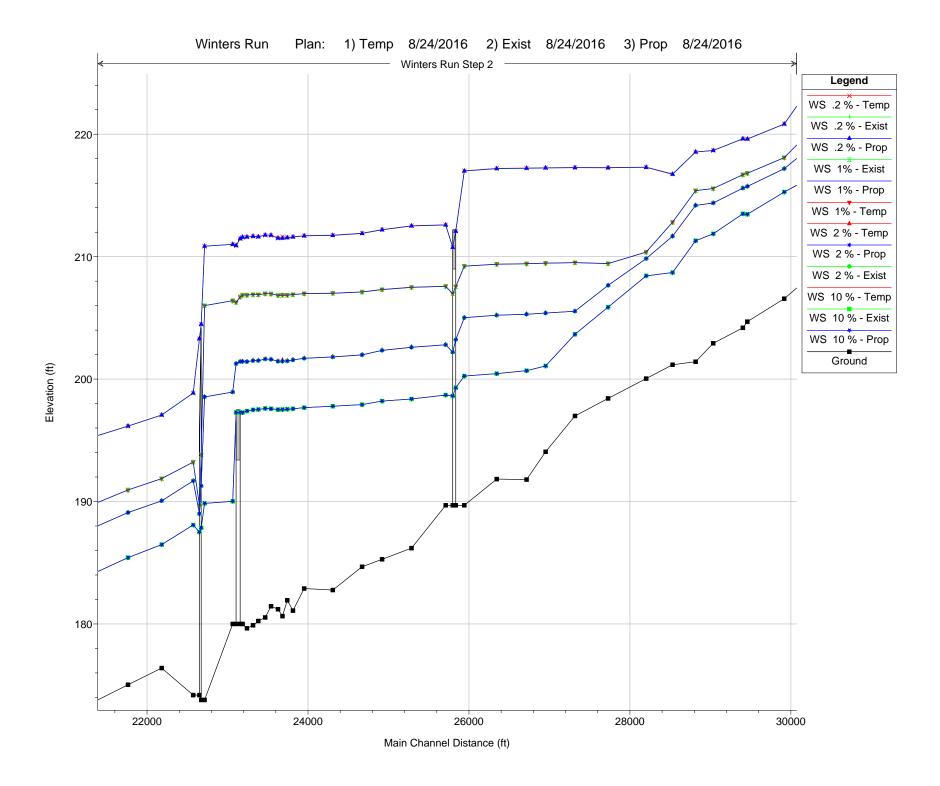
The analysis indicates that the temporary condition will result in a maximum increase 0.086 feet at the location of the temporary sediment trap during the regulatory 100-year flood event. This increase is reduced to less than 0.02 feet immediately upstream of the sediment trap which propagates approximately 0.85 miles upstream of the site. This temporary condition increase in water surface elevation is not anticipated to cause significant increase in flood risk to upstream structures during construction.

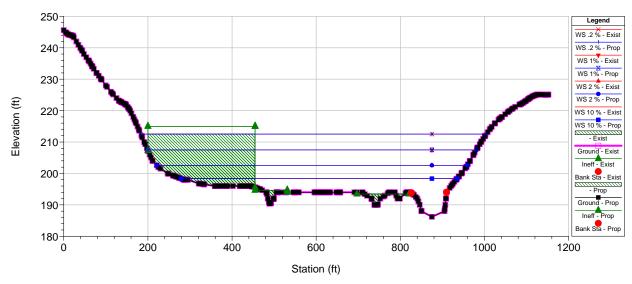
The proposed condition will not result in any significant increase (equal to or greater than 0.01 feet) in water surface elevation during the regulatory 100-year flood event. A maximum increase of 0.008 feet occurs at the location of the proposed discharge channel outlet. Insignificant increases are also observed at the cross sections between the proposed intake and the proposed discharge channel. These increases are localized and do not propagate upstream or downstream of the site of interest.

4.0 Conclusion

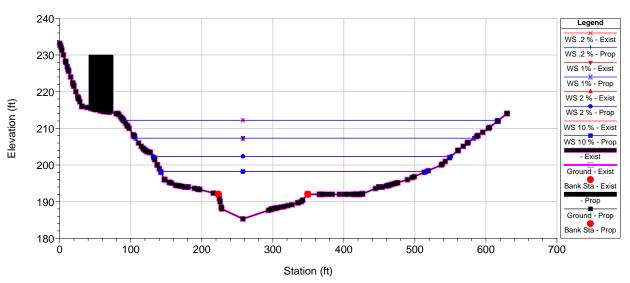
The Bel Air Impoundment project site along Winters Run is located in the FEMA study area for Harford County. The proposed permanent modifications to the intake and water treatment plant as well as the construction of the new impoundment result in no significant increase to the existing regulatory base flood elevations. During construction, temporary E&S measures will increase the base flood elevation by 0.086 feet at the site; however, impacts of this magnitude do not propagate upstream and are not anticipated to cause significant increase in flood risk to upstream structures during construction.

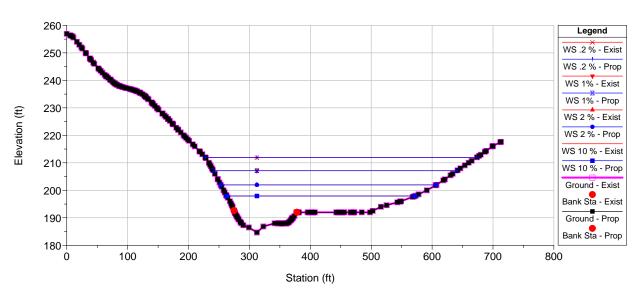

In conclusion, the proposed plan for construction of the impoundment and its associated appurtenances adequately meets current floodplain management criteria. The proposed project will ensure a reliable source of raw water for the system during periods of drought.

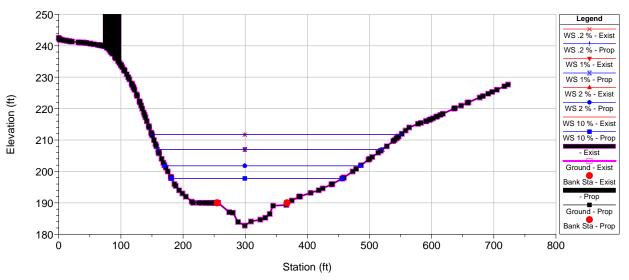


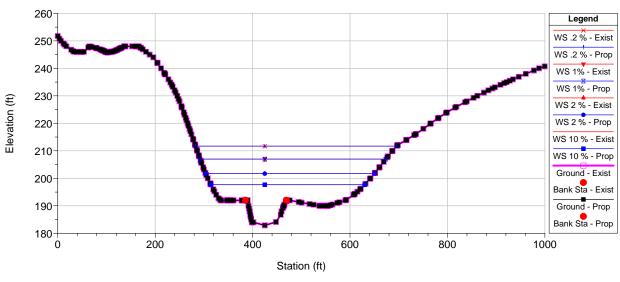

ATTACHMENT B

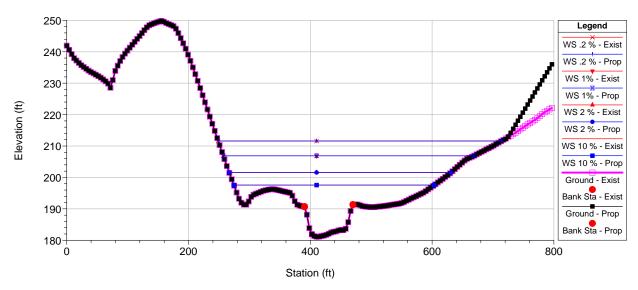
HEC-RAS Analysis Output

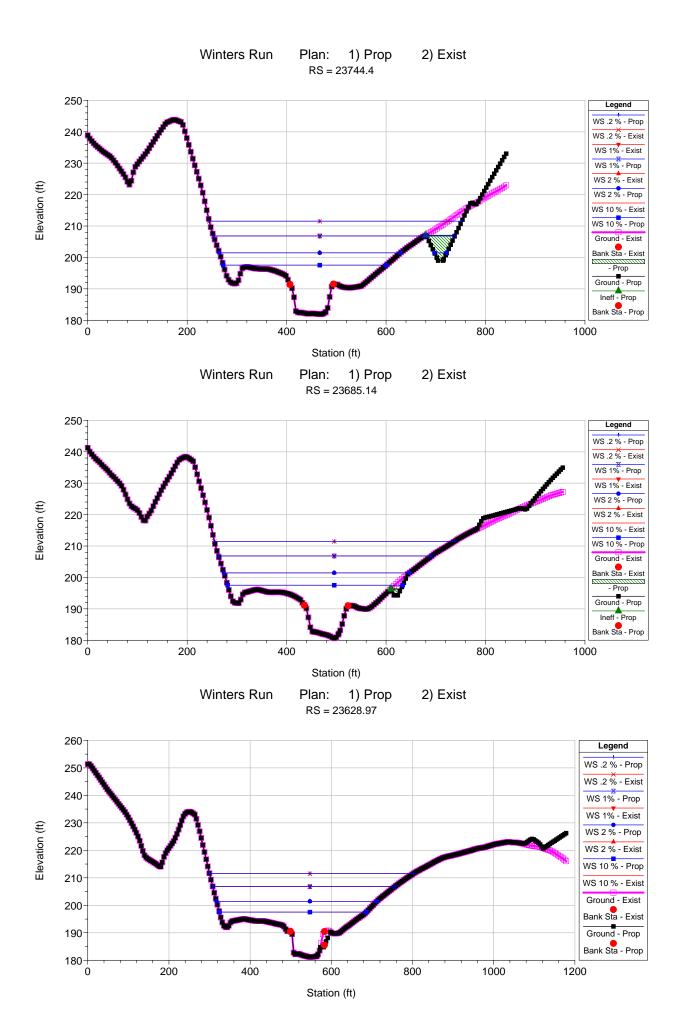



Winters Run Plan: 1) Prop 2) Exist RS = 25288.21 Effective Y

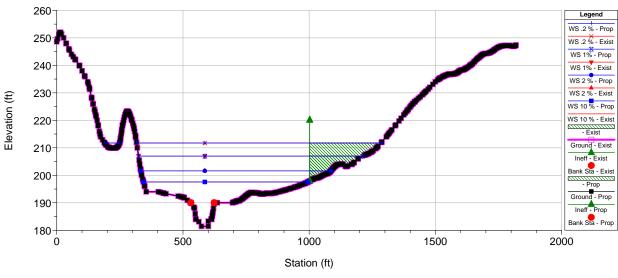

Winters Run Plan: 1) Prop 2) Exist RS = 24922.38


Winters Run Plan: 1) Prop 2) Exist RS = 24673.85

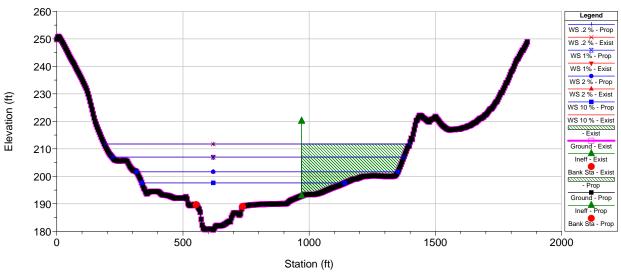

Winters Run Plan: 1) Prop 2) Exist RS = 24310.02

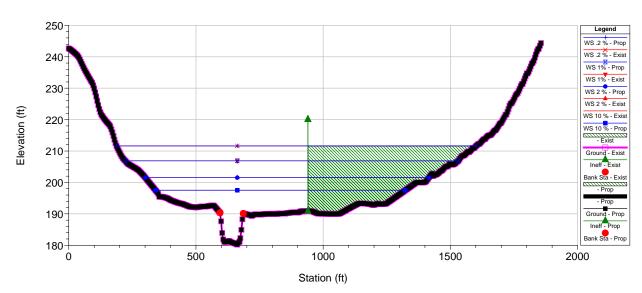


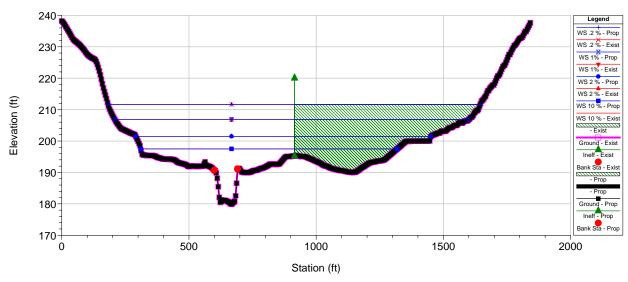
Winters Run Plan: 1) Prop 2) Exist RS = 23954.15 Effective X

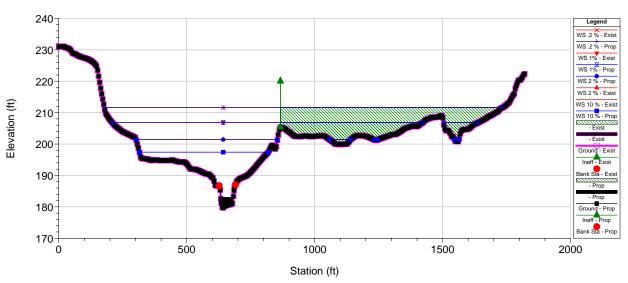


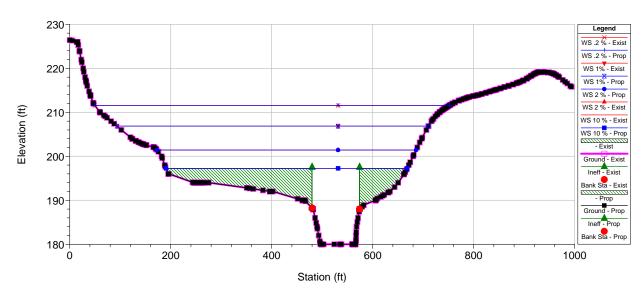
Winters Run Plan: 1) Prop 2) Exist RS = 23815.18

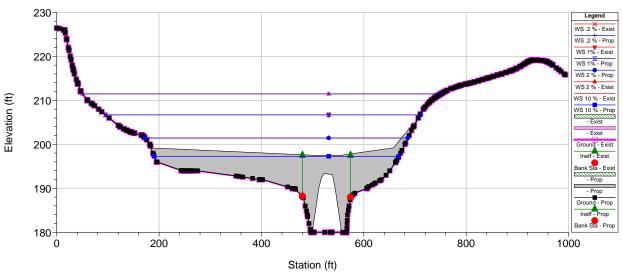


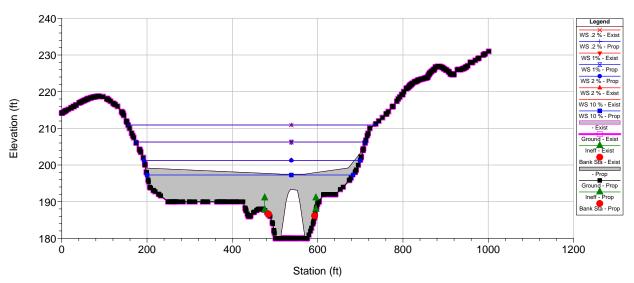

Winters Run Plan: 1) Prop 2) Exist RS = 23542.47

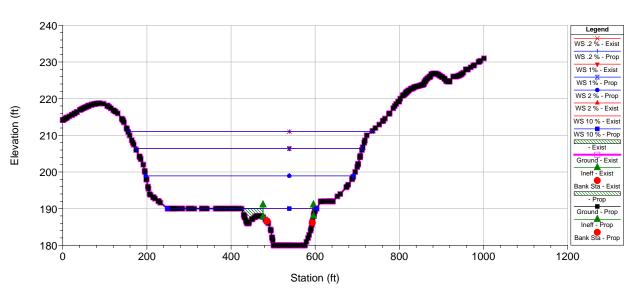

Winters Run Plan: 1) Prop 2) Exist RS = 23470.53

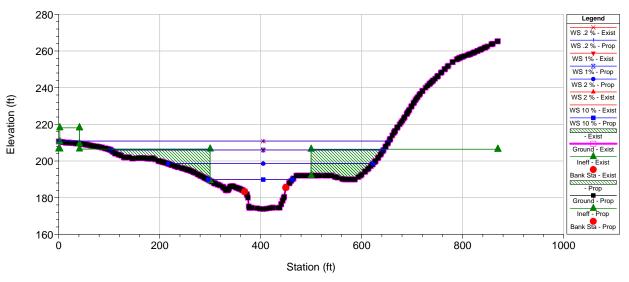

Winters Run Plan: 1) Prop 2) Exist RS = 23384.9

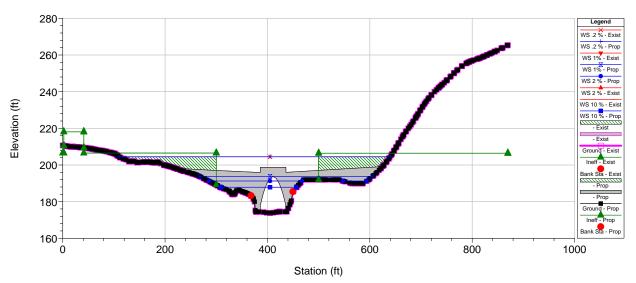

Winters Run Plan: 1) Prop 2) Exist RS = 23319.22

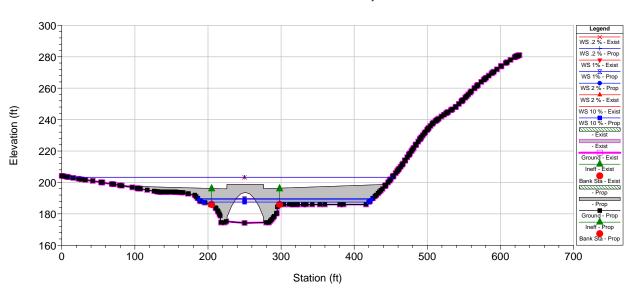

Winters Run Plan: 1) Prop 2) Exist RS = 23243

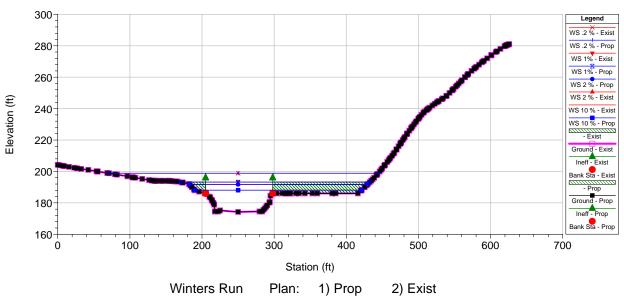

Winters Run Plan: 1) Prop 2) Exist RS = 23188.9 US Route 1

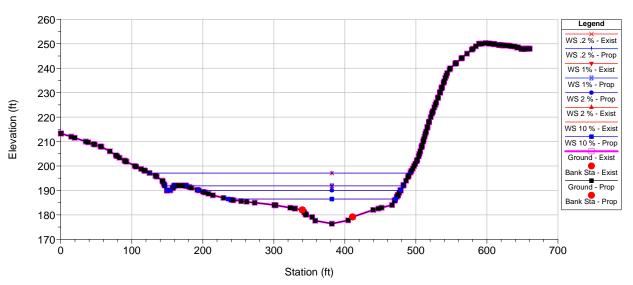

Winters Run Plan: 1) Prop 2) Exist RS = 23123 BR Bel Air Road


Winters Run Plan: 1) Prop 2) Exist RS = 23123 BR Bel Air Road


Winters Run Plan: 1) Prop 2) Exist RS = 23066.57 DS Route 1


Winters Run Plan: 1) Prop 2) Exist RS = 22716.82 Effective W - US Lake Fanny Road


Winters Run Plan: 1) Prop 2) Exist RS = 22641 BR Lake Fanny Road


Winters Run Plan: 1) Prop 2) Exist RS = 22641 BR Lake Fanny Road

Winters Run Plan: 1) Prop 2) Exist RS = 22575.76 DS lake Fanny Road

Winters Run Plan: 1) Prop 2) Exist RS = 22183.62

Winters Run Plan: 1) Prop 2) Exist RS = 21765.15

			: Step 2 Prof		Min Ch El	W.C. Flave	C-it M/ C	F C Flave	F.C. Clana	Val Chal	Flow Area	Ton Midth	Frauda # Chl
Reach	River Sta	Profile	Plan	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
Step 2	59990.99	1%	FEMA	10300.00	321.19	335.479	331.45	335.86	0.001234	6.14	3212.59	616.26	0.30
Step 2	59990.99	1%	Temp	10300.00	321.19	335.479	331.45	335.86	0.001234	6.14	3212.59	616.26	0.30
Step 2	59990.99	1%	Exist	10300.00	321.19	335.479	331.45	335.86	0.001234	6.14	3212.59	616.26	0.30
Step 2	59990.99	1%	Prop	10300.00	321.19	335.479	331.45	335.86	0.001234	6.14	3212.59	616.26	0.30
Step 2	59607.84	1%	FEMA	10300.00	321.19	334.885		335.36	0.001393	6.53	2112.43	311.36	0.32
Step 2 Step 2	59607.84 59607.84	1%	Temp Exist	10300.00	321.19 321.19	334.885 334.885		335.36 335.36	0.001393 0.001393	6.53 6.53	2112.43 2112.43	311.36 311.36	0.32 0.32
Step 2	59607.84	1%	Prop	10300.00	321.19	334.885		335.36	0.001393	6.53	2112.43	311.36	0.32
Step 2	33007.04	1 70	Пор	10300.00	321.13	334.003		333.30	0.001393	0.55	2112.40	311.30	0.32
Step 2	59123.93	1%	FEMA	10300.00	319.02	333.979		334.63	0.001658	7.65	2385.02	269.89	0.36
Step 2	59123.93	1%	Temp	10300.00	319.02	333.979		334.63	0.001658	7.65	2385.02	269.89	0.36
Step 2	59123.93	1%	Exist	10300.00	319.02	333.979		334.63	0.001658	7.65	2385.02	269.89	0.36
Step 2	59123.93	1%	Prop	10300.00	319.02	333.979		334.63	0.001658	7.65	2385.02	269.89	0.36
Step 2	58676.57	1%	FEMA	10300.00	317.01	333.926		334.10	0.000527	4.36	3973.47	402.91	0.20
Step 2 Step 2	58676.57 58676.57	1%	Temp Exist	10300.00	317.01 317.01	333.926 333.926		334.10 334.10	0.000527 0.000527	4.36 4.36	3973.47 3973.47	402.91 402.91	0.20 0.20
Step 2	58676.57	1%	Prop	10300.00	317.01	333.926		334.10	0.000527	4.36	3973.47	402.91	0.20
Olop 2	00010.01	1,0	1100	10000.00	017.01	000.020		001110	0.000027	1.00	0070.11	102.01	0.20
Step 2	58319.7	1%	FEMA	10300.00	315.29	332.536	325.40	333.55	0.001712	8.08	1281.97	446.88	0.37
Step 2	58319.7	1%	Temp	10300.00	315.29	332.536	325.40	333.55	0.001712	8.08	1281.97	446.88	0.37
Step 2	58319.7	1%	Exist	10300.00	315.29	332.536	325.40	333.55	0.001712	8.08	1281.97	446.88	0.37
Step 2	58319.7	1%	Prop	10300.00	315.29	332.536	325.40	333.55	0.001712	8.08	1281.97	446.88	0.37
Stor 2	E0000			D-1-1-									·
Step 2	58262			Bridge									
Step 2	58206.81	1%	FEMA	10300.00	314.39	328.485	323.11	329.70	0.002488	8.89	1264.86	609.61	0.44
Step 2	58206.81	1%	Temp	10300.00	314.39	328.485	323.11	329.70	0.002488	8.89	1264.86	609.61	0.44
Step 2	58206.81	1%	Exist	10300.00	314.39	328.485	323.11	329.70	0.002488	8.89	1264.86	609.61	0.44
Step 2	58206.81	1%	Prop	10300.00	314.39	328.485	323.11	329.70	0.002488	8.89	1264.86	609.61	0.44
Step 2	57889.34	1%	FEMA	10300.00	313.39	328.241		328.82	0.001395	7.00	2478.27	290.22	0.34
Step 2	57889.34	1%	Temp	10300.00	313.39	328.241		328.82	0.001395	7.00	2478.27	290.22	0.34
Step 2	57889.34	1%	Exist	10300.00	313.39	328.241		328.82	0.001395	7.00	2478.27	290.22	0.34
Step 2	57889.34	1%	Prop	10300.00	313.39	328.241		328.82	0.001395	7.00	2478.27	290.22	0.34
Step 2	57651.57	1%	FEMA	10600.00	312.63	326.441		328.17	0.004259	11.86	1456.87	205.24	0.58
Step 2	57651.57	1%	Temp	10600.00	312.63	326.441		328.17	0.004259	11.86	1456.87	205.24	0.58
Step 2	57651.57	1%	Exist	10600.00	312.63	326.441		328.17	0.004259	11.86	1456.87	205.24	0.58
Step 2	57651.57	1%	Prop	10600.00	312.63	326.441		328.17	0.004259	11.86	1456.87	205.24	0.58
Step 2	57238.61	1%	FEMA	10600.00	311.33	325.224		326.52	0.003289	10.10	1578.28	192.37	0.50
Step 2	57238.61	1%	Temp	10600.00	311.33	325.224		326.52	0.003289	10.10	1578.28	192.37	0.50
Step 2	57238.61	1%	Exist	10600.00	311.33	325.224		326.52	0.003289	10.10	1578.28	192.37	0.50
Step 2	57238.61	1%	Prop	10600.00	311.33	325.224		326.52	0.003289	10.10	1578.28	192.37	0.50
Step 2	56754.95	1%	FEMA	10600.00	309.79	324.385		325.10	0.002070	8.40	1971.57	243.21	0.40
Step 2	56754.95	1%	Temp	10600.00	309.79	324.385		325.10	0.002070	8.40	1971.57	243.21	0.40
Step 2	56754.95	1%	Exist	10600.00	309.79	324.385		325.10	0.002070	8.40	1971.57	243.21	0.40
Step 2	56754.95	1%	Prop	10600.00	309.79	324.385		325.10	0.002070	8.40	1971.57	243.21	0.40
Step 2	56318.2	1%	FEMA	10600.00	308.33	322.067		323.73	0.004690	11.17	1467.50	253.92	0.58
Step 2	56318.2	1%	Temp	10600.00	308.33	322.067		323.73	0.004690	11.17	1467.50	253.92	0.58
Step 2	56318.2	1%	Exist	10600.00	308.33	322.067		323.73	0.004690	11.17	1467.50	253.92	0.58
Step 2	56318.2	1%	Prop	10600.00	308.33	322.067		323.73	0.004690	11.17	1467.50	253.92	0.58
Step 2	56004.67	1%	FEMA	10600.00	307.28	321.496		322.40	0.002758	8.97	2115.21	297.99	0.45
Step 2	56004.67	1%	Temp	10600.00	307.28	321.496		322.40	0.002758	8.97	2115.21	297.99	0.45
Step 2	56004.67	1%	Exist	10600.00	307.28	321.496		322.40	0.002758	8.97	2115.21	297.99	0.45
Step 2	56004.67	1%	Prop	10600.00	307.28	321.496		322.40	0.002758	8.97	2115.21	297.99	0.45
Step 2	55686.88	1%	FEMA	11000.00	306.22	321.080		321.63	0.001688	7.44	2817.05	335.19	0.36
Step 2	55686.88	1%	Temp	11000.00	306.22	321.080		321.63	0.001688 0.001688	7.44	2817.05	335.19	0.36
Step 2 Step 2	55686.88 55686.88	1%	Prop	11000.00 11000.00	306.22 306.22	321.080 321.080		321.63 321.63	0.001688	7.44 7.44	2817.05 2817.05	335.19 335.19	0.36 0.36
Siep Z	33000.00	1 70	ТОР	11000.00	300.22	321.000		3∠1.03	0.001008	7.44	2017.05	335.19	0.36
Step 2	55452.56	1%	FEMA	11000.00	305.44	321.038		321.30	0.000757	5.13	2879.36	277.78	0.24
Step 2	55452.56	1%	Temp	11000.00	305.44	321.038		321.30	0.000757	5.13	2879.36	277.78	0.24
Step 2	55452.56	1%	Exist	11000.00	305.44	321.038		321.30	0.000757	5.13	2879.36	277.78	0.24
Step 2	55452.56	1%	Prop	11000.00	305.44	321.038		321.30	0.000757	5.13	2879.36	277.78	0.24
Step 2	55126.55	1%	FEMA	11000.00	304.34	320.445		321.00	0.001421	7.41	2285.25	215.38	0.34
Step 2	55126.55	1%	Temp	11000.00	304.34	320.445		321.00	0.001421	7.41	2285.25	215.38	0.34
Step 2	55126.55 55126.55	1%	Exist	11000.00 11000.00	304.34 304.34	320.445 320.445		321.00 321.00	0.001421 0.001421	7.41 7.41	2285.25 2285.25	215.38 215.38	0.34 0.34
Step 2	00120.55	1 70	Prop	11000.00	304.34	3∠0.445		3∠1.00	0.001421	7.41	2265.25	∠15.38	0.34
Step 2	54724.65	1%	FEMA	11000.00	302.99	319.131		320.27	0.002135	9.01	1679.28	166.47	0.41
Step 2	54724.65	1%	Temp	11000.00	302.99	319.131		320.27	0.002135	9.01	1679.28	166.47	0.41
Step 2	54724.65	1%	Exist	11000.00	302.99	319.131		320.27	0.002135	9.01	1679.28	166.47	0.41
Step 2	54724.65	1%	Prop	11000.00	302.99	319.131		320.27	0.002135	9.01	1679.28	166.47	0.41
Step 2	54420.88	1%	FEMA	11000.00	302.40	318.452		319.58	0.002390	9.18	1780.54	188.93	0.43
Step 2	54420.88	1%	Temp	11000.00	302.40	318.452		319.58	0.002390	9.18	1780.54	188.93	0.43
Step 2	54420.88	1%	Exist	11000.00	302.40	318.452		319.58	0.002390	9.18	1780.54	188.93	0.43
Step 2	54420.88	1%	Prop	11000.00	302.40	318.452		319.58	0.002390	9.18	1780.54	188.93	0.43
Stop 2	54048.25	1%	FEMA	11000.00	301.73	318.078		318.81	0.001358	7.39	1987.87	189.78	0.33
Step 2 Step 2	54048.25	1%	Temp	11000.00	301.73	318.078		318.81	0.001358	7.39	1987.87	189.78 189.78	0.33
Stop 2	0-10-0.20	170	Louih	11000.00	501.73	310.076		010.01	0.001000	1.39	1001.01	109.10	0.33

				e: 1% (Continu									
Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Step 2	54048.25	1%	Exist	(cfs) 11000.00	(ft) 301.73	(ft) 318.078	(ft)	(ft) 318.81	(ft/ft) 0.001358	(ft/s) 7.39	(sq ft) 1987.87	(ft) 189.78	0.33
Step 2	54048.25	1%	Prop	11000.00	301.73	318.078		318.81	0.001358	7.39	1987.87	189.78	0.33
Otop 2	04040.20	170	Пор	11000.00	001.70	010.070		010.01	0.001000	7.00	1307.07	100.70	0.00
Step 2	53766.59	1%	FEMA	11000.00	301.12	317.325	312.94	318.28	0.002447	9.30	2123.84	324.62	0.44
Step 2	53766.59	1%	Temp	11000.00	301.12	317.325	312.94	318.28	0.002447	9.30	2123.84	324.62	0.44
Step 2	53766.59	1%	Exist	11000.00	301.12	317.325	312.94	318.28	0.002447	9.30	2123.84	324.62	0.44
Step 2	53766.59	1%	Prop	11000.00	301.12	317.325	312.94	318.28	0.002447	9.30	2123.84	324.62	0.44
Step 2	53472.8	1%	FEMA	11000.00	299.74	315.894		317.40	0.003329	10.87	1634.58	179.35	0.51
Step 2	53472.8	1%	Temp	11000.00	299.74	315.894		317.40	0.003329	10.87	1634.58	179.35	0.51
Step 2	53472.8 53472.8	1%	Exist	11000.00 11000.00	299.74 299.74	315.894		317.40 317.40	0.003329 0.003329	10.87 10.87	1634.58 1634.58	179.35	0.51 0.51
Step 2	53472.6	1%	Prop	11000.00	299.74	315.894		317.40	0.003329	10.67	1034.36	179.35	0.51
Step 2	53174.82	1%	FEMA	11000.00	299.26	315.002		316.42	0.003135	10.33	1610.74	177.72	0.49
Step 2	53174.82	1%	Temp	11000.00	299.26	315.002		316.42	0.003135	10.33	1610.74	177.72	0.49
Step 2	53174.82	1%	Exist	11000.00	299.26	315.002		316.42	0.003135	10.33	1610.74	177.72	0.49
Step 2	53174.82	1%	Prop	11000.00	299.26	315.002		316.42	0.003135	10.33	1610.74	177.72	0.49
Step 2	52879.26	1%	FEMA	11000.00	299.38	313.969		315.40	0.003857	10.85	1741.75	212.94	0.54
Step 2	52879.26	1%	Temp	11000.00	299.38	313.969		315.40	0.003857	10.85	1741.75	212.94	0.54
Step 2	52879.26	1%	Exist	11000.00	299.38	313.969		315.40	0.003857	10.85	1741.75	212.94	0.54
Step 2	52879.26	1%	Prop	11000.00	299.38	313.969		315.40	0.003857	10.85	1741.75	212.94	0.54
Cton C	E0444 00	40/	FENAC	11000.00	000.40	240.000	000.05	040.00	0.004044	7.0-	2010.10	450.00	2.22
Step 2 Step 2	52411.36 52411.36	1%	Temp	11200.00 11200.00	298.46 298.46	313.329 313.329	308.35 308.35	313.96 313.96	0.001911 0.001911	7.95 7.95	2910.13 2910.13	450.20 450.20	0.39
Step 2	52411.36	1%	Exist	11200.00	298.46	313.329	308.35	313.96	0.001911	7.95	2910.13	450.20 450.20	0.39
Step 2	52411.36	1%	Prop	11200.00	298.46	313.329	308.35	313.96	0.001911	7.95	2910.13	450.20 450.20	0.39
Jiop Z	02-111.30	170	Пор	11200.00	230.40	313.329	500.35	313.80	0.001811	1.00	2010.13	730.20	0.39
Step 2	51950.89	1%	FEMA	11200.00	297.55	311.391		312.78	0.003831	10.83	1822.79	217.52	0.53
Step 2	51950.89	1%	Temp	11200.00	297.55	311.391		312.78	0.003831	10.83	1822.79	217.52	0.53
Step 2	51950.89	1%	Exist	11200.00	297.55	311.391		312.78	0.003831	10.83	1822.79	217.52	0.53
Step 2	51950.89	1%	Prop	11200.00	297.55	311.391		312.78	0.003831	10.83	1822.79	217.52	0.53
Step 2	51712.67	1%	FEMA	11200.00	297.09	309.853		311.69	0.005372	12.18	1552.37	207.33	0.61
Step 2	51712.67	1%	Temp	11200.00	297.09	309.853		311.69	0.005372	12.18	1552.37	207.33	0.61
Step 2	51712.67	1%	Exist	11200.00	297.09	309.853		311.69	0.005372	12.18	1552.37	207.33	0.61
Step 2	51712.67	1%	Prop	11200.00	297.09	309.853		311.69	0.005372	12.18	1552.37	207.33	0.61
01 0	E400E 77	40/	FF144	44000.00	004.05	000 440		000.07	0.000005	40.50	4704.04	200 50	0.50
Step 2 Step 2	51325.77 51325.77	1%	Temp	11200.00 11200.00	294.85 294.85	308.443 308.443		309.87 309.87	0.003895 0.003895	10.53 10.53	1734.34 1734.34	236.56 236.56	0.53 0.53
Step 2	51325.77	1%	Exist	11200.00	294.85	308.443		309.87	0.003895	10.53	1734.34	236.56	0.53
Step 2	51325.77	1%	Prop	11200.00	294.85	308.443		309.87	0.003895	10.53	1734.34	236.56	0.53
Otop 2	0.1020.11	170	1100	11200.00	201.00	000.110		000.07	0.000000	10.00	1701.01	200.00	0.00
Step 2	51145.92	1%	FEMA	11200.00	293.47	308.078		309.22	0.002663	9.89	1888.24	213.10	0.46
Step 2	51145.92	1%	Temp	11200.00	293.47	308.078		309.22	0.002663	9.89	1888.24	213.10	0.46
Step 2	51145.92	1%	Exist	11200.00	293.47	308.078		309.22	0.002663	9.89	1888.24	213.10	0.46
Step 2	51145.92	1%	Prop	11200.00	293.47	308.078		309.22	0.002663	9.89	1888.24	213.10	0.46
Step 2	50992.82	1%	FEMA	11200.00	292.98	307.628		308.82	0.002727	9.97	2235.33	331.26	0.47
Step 2	50992.82	1%	Temp	11200.00	292.98	307.628		308.82	0.002727	9.97	2235.33	331.26	0.47
Step 2	50992.82	1%	Exist	11200.00	292.98	307.628		308.82	0.002727	9.97	2235.33 2235.33	331.26	0.47
Step 2	50992.82	1%	Prop	11200.00	292.98	307.628		308.82	0.002727	9.97	2235.33	331.26	0.47
Step 2	50747.62	1%	FEMA	11200.00	292.20	305.141	304.13	307.69	0.006677	13.63	1266.80	218.60	0.69
Step 2	50747.62	1%	Temp	11200.00	292.20	305.141	304.13	307.69		13.63	1266.80	218.60	0.69
Step 2	50747.62	1%	Exist	11200.00	292.20	305.141	304.13	307.69	0.006677	13.63	1266.80	218.60	0.69
Step 2	50747.62	1%	Prop	11200.00	292.20	305.141	304.13	307.69	0.006677	13.63	1266.80	218.60	0.69
Step 2	50287.4	1%	FEMA	11200.00	292.52	304.337		305.21	0.003118	8.53	2502.26	463.78	0.47
Step 2	50287.4	1%	Temp	11200.00	292.52	304.337		305.21	0.003118	8.53	2502.26	463.78	0.47
Step 2	50287.4	1%	Exist	11200.00	292.52	304.337		305.21	0.003118	8.53	2502.26	463.78	0.47
Step 2	50287.4	1%	Prop	11200.00	292.52	304.337		305.21	0.003118	8.53	2502.26	463.78	0.47
Stor 2	40054.00	10/	EENAA	11000.00	200.05	204.040		201.12	0.001683	2.00	4404.00	600.01	0.00
Step 2 Step 2	49951.02 49951.02	1%	FEMA Temp	11200.00 11200.00	290.85 290.85	304.012 304.012		304.42 304.42	0.001683	6.62 6.62	4121.60 4121.60	696.61 696.61	0.35 0.35
Step 2	49951.02	1%	Exist	11200.00	290.85	304.012		304.42	0.001683	6.62	4121.60	696.61	0.35
Step 2	49951.02	1%	Prop	11200.00	290.85	304.012		304.42	0.001683	6.62	4121.60	696.61	0.35
				55.50				232	2.22.000	0.02		230.01	0.00
Step 2	49613.97	1%	FEMA	11200.00	290.36	303.719		304.07	0.001294	5.93	4434.27	749.44	0.31
Step 2	49613.97	1%	Temp	11200.00	290.36	303.719		304.07	0.001294	5.93	4434.27	749.44	0.31
Step 2	49613.97	1%	Exist	11200.00	290.36	303.719		304.07	0.001294	5.93	4434.27	749.44	0.31
Step 2	49613.97	1%	Prop	11200.00	290.36	303.719		304.07	0.001294	5.93	4434.27	749.44	0.31
Step 2	49438.25	1%	FEMA	11200.00	289.80	303.314	300.35	303.80		7.54	4146.37	736.39	0.37
Step 2	49438.25	1%	Temp	11200.00	289.80	303.314	300.35	303.80	0.001816	7.54	4146.37	736.39	0.37
Step 2	49438.25	1%	Exist	11200.00	289.80	303.314	300.35	303.80	0.001816	7.54	4146.37	736.39	0.37
Step 2	49438.25	1%	Prop	11200.00	289.80	303.314	300.35	303.80	0.001816	7.54	4146.37	736.39	0.37
Step 2	49298.45	1%	FEMA	11200.00	289.36	303.071		303.60	0.001862	7.69	3788.31	599.28	0.38
Step 2	49298.45	1%	Temp	11200.00	289.36	303.071		303.60	0.001862	7.69	3788.31	599.28	0.38
Step 2	49298.45	1%	Exist	11200.00	289.36	303.071		303.60	0.001862	7.69	3788.31	599.28	0.38
Step 2	49298.45	1%	Prop	11200.00	289.36	303.071		303.60		7.69	3788.31	599.28	0.38
		1		200.00	_00.00	230.071		300.00	2.30.032		2,00.01	555.20	2.50
Step 2	49095.59	1%	FEMA	11200.00	288.69	302.666		303.29	0.002046	7.73	3162.78	483.18	0.39
Step 2	49095.59	1%	Temp	11200.00	288.69	302.666		303.29	0.002046	7.73	3162.78	483.18	0.39
Step 2	49095.59	1%	Exist	11200.00	288.69	302.666		303.29	0.002046	7.73	3162.78	483.18	0.39
Step 2	49095.59	1%	Prop	11200.00	288.69	302.666		303.29	0.002046	7.73	3162.78	483.18	0.39
Step 2	48751.7	1%	FEMA	11200.00	287.60	301.094		302.35	0.004028	10.60	2155.28	335.34	0.54

Reach	River: Winters River Sta	Run Reach: Profile	Step 2 Profil	le: 1% (Continu	ed) Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reacii	River Sta	Fiolile	Fiaii	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	Flow Area (sq ft)	(ft)	Floude # CIII
Step 2	48751.7	1%	Temp	11200.00	287.60	301.094	()	302.35	0.004028	10.60	2155.28	335.34	0.54
Step 2	48751.7	1%	Exist	11200.00	287.60	301.094		302.35	0.004028	10.60	2155.28	335.34	0.54
Step 2	48751.7	1%	Prop	11200.00	287.60	301.094		302.35	0.004028	10.60	2155.28	335.34	0.54
Step 2	48453.89	1%	FEMA	11200.00	286.64	300.985		301.46	0.001582	7.22	3383.08	370.78	0.35
Step 2	48453.89	1%	Temp	11200.00	286.64	300.985		301.46	0.001582	7.22	3383.08	370.78	0.35
Step 2	48453.89	1%	Exist	11200.00	286.64	300.985		301.46	0.001582	7.22	3383.08	370.78	0.35
Step 2	48453.89	1%	Prop	11200.00	286.64	300.985		301.46	0.001582	7.22	3383.08	370.78	0.35
Step 2	48003.08	1%	FEMA	11400.00	284.19	299.909		300.64	0.001824	8.38	2736.90	280.42	0.38
Step 2	48003.08	1%	Temp	11400.00	284.19	299.909		300.64	0.001824	8.38	2736.90	280.42	0.38
Step 2	48003.08	1%	Exist	11400.00	284.19	299.909		300.64	0.001824	8.38	2736.90	280.42	0.38
Step 2	48003.08	1%	Prop	11400.00	284.19	299.909		300.64	0.001824	8.38	2736.90	280.42	0.38
_													
Step 2	47732.88	1%	FEMA	11400.00	283.32	298.387		299.90	0.003534	10.56	1590.18	191.17	0.52
Step 2	47732.88	1%	Temp	11400.00	283.32	298.387		299.90	0.003534	10.56	1590.18	191.17	0.52
Step 2	47732.88	1%	Exist	11400.00	283.32	298.387		299.90	0.003534	10.56	1590.18	191.17	0.52
Step 2	47732.88	1%	Prop	11400.00	283.32	298.387		299.90	0.003534	10.56	1590.18	191.17	0.52
01 0	47504.07	40/	EENA	44 400 00	200.00	007.070		000.00	0.000704	0.04	0445.50	040.00	0.40
Step 2	47501.97	1%	FEMA	11400.00	282.99	297.979		299.06	0.002781	9.21	2145.58	310.60	0.46
Step 2	47501.97	1%	Temp	11400.00	282.99	297.979		299.06	0.002781	9.21	2145.58	310.60	0.46
Step 2	47501.97 47501.97	1%	Prop	11400.00 11400.00	282.99 282.99	297.979 297.979		299.06 299.06	0.002781 0.002781	9.21 9.21	2145.58 2145.58	310.60 310.60	0.46
Step 2	47301.97	1 70	Пор	11400.00	202.99	291.919		∠39.06	0.002/61	9.21	∠ 140.08	310.00	0.46
Step 2	47190.29	1%	FEMA	11400.00	282.59	297.228		298.15	0.002805	9.00	2530.34	411.51	0.45
Step 2	47190.29	1%	Temp	11400.00	282.59	297.228		298.15	0.002805	9.00	2530.34	411.51	0.45
Step 2	47190.29	1%	Exist	11400.00	282.59	297.228		298.15	0.002805	9.00	2530.34	411.51	0.45
Step 2	47190.29	1%	Prop	11400.00	282.59	297.228		298.15	0.002805	9.00	2530.34	411.51	0.45
2.0p Z	17.100.20	1,70	7.00	400.00	202.00	201.220		200.10	5.502000	3.00	2000.04	711.51	0.40
Step 2	46811.26	1%	FEMA	11400.00	279.99	296.151		297.20	0.002204	9.39	2225.89	243.14	0.43
Step 2	46811.26	1%	Temp	11400.00	279.99	296.151		297.20	0.002204	9.39	2225.89	243.14	0.43
Step 2	46811.26	1%	Exist	11400.00	279.99	296.151		297.20	0.002204	9.39	2225.89	243.14	0.43
Step 2	46811.26	1%	Prop	11400.00	279.99	296.151		297.20	0.002204	9.39	2225.89	243.14	0.43
Step 2	46419.41	1%	FEMA	11400.00	279.94	295.493		296.36	0.001952	7.95	2230.55	320.08	0.39
Step 2	46419.41	1%	Temp	11400.00	279.94	295.493		296.36	0.001952	7.95	2230.55	320.08	0.39
Step 2	46419.41	1%	Exist	11400.00	279.94	295.493		296.36	0.001952	7.95	2230.55	320.08	0.39
Step 2	46419.41	1%	Prop	11400.00	279.94	295.493		296.36	0.001952	7.95	2230.55	320.08	0.39
Step 2	46141.52	1%	FEMA	11400.00	279.52	294.668		295.73	0.002513	8.85	2024.02	301.53	0.43
Step 2	46141.52	1%	Temp	11400.00	279.52	294.668		295.73	0.002513	8.85	2024.02	301.53	0.43
Step 2	46141.52	1%	Exist	11400.00	279.52	294.668		295.73	0.002513	8.85	2024.02	301.53	0.43
Step 2	46141.52	1%	Prop	11400.00	279.52	294.668		295.73	0.002513	8.85	2024.02	301.53	0.43
Step 2	45794.66	1%	FEMA	11400.00	278.51	293.903	289.29	294.93	0.002285	9.17	2393.30	339.44	0.43
Step 2	45794.66	1%	Temp	11400.00	278.51	293.903	289.29	294.93	0.002285	9.17	2393.30	339.44	0.43
Step 2	45794.66	1%	Exist	11400.00	278.51	293.903	289.29	294.93	0.002285	9.17	2393.30	339.44	0.43
Step 2	45794.66	1%	Prop	11400.00	278.51	293.903	289.29	294.93	0.002285	9.17	2393.30	339.44	0.43
Stop 2	45341.54	1%	FEMA	12400.00	277.18	292.957		293.95	0.002244	8.84	2401.74	306.01	0.42
Step 2 Step 2	45341.54	1%	Temp	12400.00	277.18	292.957		293.95	0.002244	8.84	2401.74	306.01	0.42
Step 2	45341.54	1%	Exist	12400.00	277.18	292.957		293.95	0.002244	8.84	2401.74	306.01	0.42
Step 2	45341.54	1%	Prop	12400.00	277.18	292.957		293.95	0.002244	8.84	2401.74	306.01	0.42
Otop 2	10011101	17,0	1.100	12 100.00	2,,,,,	202.007		200.00	0.002211	0.01	2.0	000.01	0.12
Step 2	44970.82	1%	FEMA	12400.00	276.09	291.363		292.89	0.003397	10.83	1883.67	240.79	0.52
Step 2	44970.82	1%	Temp	12400.00	276.09	291.363		292.89	0.003397	10.83	1883.67	240.79	0.52
Step 2	44970.82	1%	Exist	12400.00	276.09	291.363		292.89	0.003397	10.83	1883.67	240.79	0.52
Step 2	44970.82	1%	Prop	12400.00	276.09	291.363		292.89	0.003397	10.83	1883.67	240.79	0.52
													_
Step 2	44713.84	1%	FEMA	12400.00	275.33	290.988		292.01	0.002443	9.24	2226.96	276.18	0.44
Step 2	44713.84	1%	Temp	12400.00	275.33	290.988		292.01	0.002443	9.24	2226.96	276.18	0.44
Step 2	44713.84	1%	Exist	12400.00	275.33	290.988		292.01	0.002443	9.24	2226.96	276.18	0.44
Step 2	44713.84	1%	Prop	12400.00	275.33	290.988		292.01	0.002443	9.24	2226.96	276.18	0.44
Step 2	44444.14	1%	FEMA	12400.00	274.54	288.934		291.04	0.005202	12.34	1480.16	203.97	0.62
Step 2	44444.14	1%	Temp	12400.00	274.54	288.934		291.04	0.005202	12.34	1480.16	203.97	0.62
Step 2	44444.14	1%	Exist	12400.00	274.54	288.934		291.04	0.005202	12.34	1480.16	203.97	0.62
Step 2	44444.14	1%	Prop	12400.00	274.54	288.934		291.04	0.005202	12.34	1480.16	203.97	0.62
Ctor O	44400.04	10/	FE111	40400 0	070 70	00= 0=-		000 0-	0.00=-	44.0.	4750.00	000 0-	~
Step 2	44183.21	1%	FEMA	12400.00	273.78	287.972		289.66	0.004453	11.34	1758.66	260.80	0.57
Step 2	44183.21	1%	Temp	12400.00	273.78	287.972		289.66	0.004453	11.34	1758.66	260.80	0.57
Step 2	44183.21	1%	Exist	12400.00	273.78	287.972		289.66	0.004453	11.34	1758.66	260.80	0.57
Step 2	44183.21	1 70	Prop	12400.00	273.78	287.972		289.66	0.004453	11.34	1758.66	260.80	0.57
Step 2	43916.01	1%	FEMA	13300.00	273.01	287.283		288.60	0.002997	9.51	1766.02	202.75	0.48
Step 2	43916.01	1%	Temp	13300.00	273.01	287.283		288.60	0.002997	9.51	1766.02	202.75	0.48
Step 2	43916.01	1%	Exist	13300.00	273.01	287.283		288.60	0.002997	9.51	1766.02	202.75	0.48
Step 2	43916.01	1%	Prop	13300.00	273.01	287.283		288.60	0.002997	9.51	1766.02	202.75	0.48
op =	100.001	1,70	7.00	.5500.00	270.01	237.203		200.00	0.002001	5.51	. 7 00.02	202.73	0.40
Step 2	43582.02	1%	FEMA	13300.00	272.02	285.749		287.35	0.004732	11.30	2004.90	289.84	0.59
Step 2	43582.02	1%	Temp	13300.00	272.02	285.749		287.35	0.004732	11.30	2004.90	289.84	0.59
Step 2	43582.02	1%	Exist	13300.00	272.02	285.749		287.35	0.004732	11.30	2004.90	289.84	0.59
Step 2	43582.02	1%	Prop	13300.00	272.02	285.749		287.35	0.004732	11.30	2004.90	289.84	0.59
Step 2	43303.92	1%	FEMA	13300.00	271.20	284.728		286.05	0.004316	10.58	2116.73	304.86	0.56
Step 2	43303.92	1%	Temp	13300.00	271.20	284.728		286.05	0.004316	10.58	2116.73	304.86	0.56
	43303.92	1%	Exist	13300.00	271.20	284.728		286.05	0.004316	10.58	2116.73	304.86	0.56
Step 2													
Step 2 Step 2	43303.92	1%	Prop	13300.00	271.20	284.728		286.05	0.004316	10.58	2116.73	304.86	0.56

Reach	River Sta	Profile	: Step 2 Profil	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Step 2	42957.81	1%	FEMA	13300.00	270.19	283.530		284.74	0.004021	10.26	1833.40	299.39	0.5
Step 2	42957.81	1%	Temp	13300.00	270.19	283.530		284.74	0.004021	10.26	1833.40	299.39	0.5
Step 2	42957.81	1%	Exist	13300.00	270.19	283.530		284.74	0.004021	10.26	1833.40	299.39	0.5
Step 2	42957.81	1%	Prop	13300.00	270.19	283.530		284.74	0.004021	10.26	1833.40	299.39	0.5
Step 2	42235.91	1%	FEMA	13300.00	266.57	282.988		283.29	0.000871	5.37	3677.34	425.47	0.20
Step 2	42235.91	1%	Temp	13300.00	266.57	282.988		283.29	0.000871	5.37	3677.34	425.47	0.2
Step 2	42235.91	1%	Exist	13300.00	266.57	282.988		283.29	0.000871	5.37	3677.34	425.47	0.2
Step 2	42235.91	1%	Prop	13300.00	266.57	282.988		283.29	0.000871	5.37	3677.34	425.47	0.2
Step 2	41999.72	1%	FEMA	13300.00	265.71	282.630		283.01	0.001169	6.38	4987.22	657.38	0.3
Step 2	41999.72	1%	Temp	13300.00	265.71	282.630		283.01	0.001169	6.38	4987.22	657.38	0.30
Step 2	41999.72	1%	Exist	13300.00	265.71	282.630		283.01	0.001169	6.38	4987.22	657.38	0.30
Step 2	41999.72	1%	Prop	13300.00	265.71	282.630		283.01	0.001169	6.38	4987.22	657.38	0.3
Step 2	41598.61	1%	FEMA	13300.00	263.56	280.589		282.17	0.002998	10.49	1732.29	202.44	0.49
Step 2	41598.61	1%	Temp	13300.00	263.56	280.589		282.17	0.002998	10.49	1732.29	202.44	0.4
Step 2	41598.61	1%	Exist	13300.00	263.56	280.589		282.17	0.002998	10.49	1732.29	202.44	0.49
Step 2	41598.61	1%	Prop	13300.00	263.56	280.589		282.17	0.002998	10.49	1732.29	202.44	0.49
0: 0		401		10000 00	200.00	070.005		201.00		40.07	4500 50	105.00	
Step 2	41313.82	1%	FEMA	13300.00	263.02	278.865		281.03	0.004925	12.37	1500.50	195.02	0.6
Step 2	41313.82	1%	Temp	13300.00	263.02	278.865		281.03	0.004925	12.37	1500.50	195.02	0.6
Step 2	41313.82	1%	Exist	13300.00	263.02	278.865		281.03	0.004925	12.37	1500.50	195.02	0.6
Step 2	41313.82	1%	Prop	13300.00	263.02	278.865		281.03	0.004925	12.37	1500.50	195.02	0.6
Step 2	40924.63	1%	FEMA	13300.00	261.02	277.377		279.25	0.003926	11.44	1566.95	185.13	0.5
Step 2	40924.63	1%	Temp	13300.00	261.02	277.377		279.25	0.003926	11.44	1566.95	185.13	0.5
Step 2	40924.63	1%	Exist	13300.00	261.02	277.377		279.25	0.003926	11.44	1566.95	185.13	0.5
Step 2	40924.63	1%	Prop	13300.00	261.02	277.377		279.25	0.003926	11.44	1566.95	185.13	0.5
,				12230.00		0.7		0.20	,		. 2 30.00	. 30. 10	0.00
Step 2	40544	1%	FEMA	13300.00	261.13	276.396		277.79	0.003135	9.78	1711.02	192.53	0.49
Step 2	40544	1%	Temp	13300.00	261.13	276.396		277.79	0.003135	9.78	1711.02	192.53	0.49
Step 2	40544	1%	Exist	13300.00	261.13	276.396		277.79	0.003135	9.78	1711.02	192.53	0.49
Step 2	40544	1%	Prop	13300.00	261.13	276.396		277.79	0.003135	9.78	1711.02	192.53	0.49
Step 2	40341.57	1%	FEMA	13300.00	260.69	273.842	272.77	276.68	0.008049	13.89	1216.90	192.47	0.76
Step 2	40341.57	1%	Temp	13300.00	260.69	273.842	272.77	276.68	0.008049	13.89	1216.90	192.47	0.76
Step 2	40341.57	1%	Exist	13300.00	260.69	273.842	272.77	276.68	0.008049	13.89	1216.90	192.47	0.76
Step 2	40341.57	1%	Prop	13300.00	260.69	273.842	272.77	276.68	0.008049	13.89	1216.90	192.47	0.76
Step 2	40103.12	1%	FEMA	13300.00	259.70	273.162		275.07	0.004112	11.37	1576.03	297.04	0.6
Step 2	40103.12	1%	Temp	13300.00	259.70	273.162		275.07	0.004112	11.37	1576.03	297.04	0.6
Step 2	40103.12	1%	Exist	13300.00	259.70	273.162		275.07	0.004112	11.37	1576.03	297.04	0.6
Step 2	40103.12	1%	Prop	13300.00	259.70	273.162		275.07	0.004112	11.37	1576.03	297.04	0.6
Cton O	39705.5	1%	FEMA	13300.00	257.77	271.273		273.37	0.004358	12.01	1481.79	222.07	0.63
Step 2 Step 2	39705.5	1%	Temp	13300.00	257.77	271.273		273.37	0.004358	12.01	1481.79	222.07	0.63
Step 2	39705.5	1%	Exist	13300.00	257.77	271.273		273.37	0.004358	12.01	1481.79	222.07	0.63
Step 2	39705.5	1%	Prop	13300.00	257.77	271.273		273.37	0.004358	12.01	1481.79	222.07	0.63
Step 2	39703.3	1 70	Пор	13300.00	231.11	211.213		213.31	0.004330	12.01	1401.73	222.01	0.00
Step 2	39429.45	1%	FEMA	13300.00	255.80	268.774	267.69	271.76	0.007499	15.62	1520.22	208.92	0.82
Step 2	39429.45	1%	Temp	13300.00	255.80	268.774	267.69	271.76	0.007499	15.62	1520.22	208.92	0.82
Step 2	39429.45	1%	Exist	13300.00	255.80	268.774	267.69	271.76	0.007499	15.62	1520.22	208.92	0.82
Step 2	39429.45	1%	Prop	13300.00	255.80	268.774	267.69	271.76	0.007499	15.62	1520.22	208.92	0.82
Step 2	39183.36	1%	FEMA	13300.00	255.09	269.623	262.31	270.07	0.000725	5.40	2603.58	341.18	0.27
Step 2	39183.36	1%	Temp	13300.00	255.09	269.623	262.31	270.07	0.000725	5.40	2603.58	341.18	0.27
Step 2	39183.36	1%	Exist	13300.00	255.09	269.623	262.31	270.07	0.000725	5.40	2603.58	341.18	0.27
Step 2	39183.36	1%	Prop	13300.00	255.09	269.623	262.31	270.07	0.000725	5.40	2603.58	341.18	0.27
0				-									
Step 2	39070			Bridge									
Cton C	20044.07	40/	EEM*	12222 62	050.00	200 700	000.00	000 55	0.004504	7.01	4004 (=	044 10	
Step 2	39044.97 39044.97	1%	FEMA	13300.00 13300.00	256.00 256.00	268.722 268.722	263.30 263.30	269.55	0.001564 0.001564	7.31	1824.47 1824.47	241.46 241.46	0.38
Step 2 Step 2	39044.97	1%	Temp Exist	13300.00	256.00 256.00	268.722	263.30	269.55 269.55	0.001564	7.31 7.31	1824.47 1824.47	241.46	0.3
Step 2	39044.97	1%	Prop	13300.00	256.00	268.722	263.30	269.55	0.001564	7.31	1824.47	241.46	0.3
	220107	1.,,		.0000.00	230.00	200.722	230.00	200.00	3.001004	7.01	. 524.47	271.70	0.50
Step 2	38693.73	1%	FEMA	13400.00	251.54	264.872	263.53	267.90	0.006315	15.05	1380.49	187.87	0.77
Step 2	38693.73	1%	Temp	13400.00	251.54	264.872	263.53	267.90	0.006315	15.05	1380.49	187.87	0.77
Step 2	38693.73	1%	Exist	13400.00	251.54	264.872	263.53	267.90	0.006315	15.05	1380.49	187.87	0.77
Step 2	38693.73	1%	Prop	13400.00	251.54	264.872	263.53	267.90	0.006315	15.05	1380.49	187.87	0.77
Step 2	38521.9	1%	FEMA	13400.00	250.59	264.560		266.80	0.004127	12.70	1497.54	175.45	0.63
Step 2	38521.9	1%	Temp	13400.00	250.59	264.560		266.80	0.004127	12.70	1497.54	175.45	0.6
Step 2	38521.9	1%	Exist	13400.00	250.59	264.560		266.80	0.004127	12.70	1497.54	175.45	0.63
Step 2	38521.9	1%	Prop	13400.00	250.59	264.560		266.80	0.004127	12.70	1497.54	175.45	0.63
Step 2	38268.25	1%	FEMA	13400.00	249.04	263.952		265.78	0.003080	11.26	1583.67	174.87	0.55
Step 2	38268.25	1%	Temp	13400.00	249.04	263.952		265.78	0.003080	11.26	1583.67	174.87	0.5
Step 2	38268.25	1%	Exist	13400.00	249.04	263.952		265.78	0.003080	11.26	1583.67	174.87	0.5
Step 2	38268.25	1%	Prop	13400.00	249.04	263.952		265.78	0.003080	11.26	1583.67	174.87	0.5
Stop 2	38026.75	10/	FEMA	13400.00	247.00	262.403	259.99	264.83	0.004402	13.38	1526.04	175.61	0.6
Step 2	38026.75 38026.75	1%	Temp	13400.00	247.28 247.28	262.403 262.403	259.99	264.83	0.004402	13.38	1526.04 1526.04	175.61	0.69
Step 2 Step 2	38026.75	1%	Exist	13400.00	247.28	262.403	259.99	264.83	0.004402	13.38	1526.04	175.61	0.65
Step 2	38026.75	1%	Prop	13400.00	247.28	262.403	259.99	264.83	0.004402	13.38	1526.04	175.61	0.65
					220	_5250		2000	2.30 1.132	.0.00	. 520.04	1.0.01	5.00
	37846.66	1%	FEMA	13400.00	247.20	259.485	259.49	263.56	0.009327	16.81	1085.55	165.25	0.9
Step 2										. 0.0 1			

Reach	River Sta	Profile	: Step 2 Profil	Q Total (cfs)	Min Ch El	W.S. Elev (ft)	Crit W.S.	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
Step 2	37846.66	1%	Exist	13400.00	247.20	259.485	259.49	263.56	0.009327	16.81	1085.55	165.25	0.9
Step 2	37846.66	1%	Prop	13400.00	247.20	259.485	259.49	263.56	0.009327	16.81	1085.55	165.25	0.9
Step 2	37609.1	1%	FEMA	13400.00	246.27	259.058		260.00	0.003196	9.84	2175.10	399.94	0.5
Step 2	37609.1	1%	Temp	13400.00 13400.00	246.27	259.058 259.058		260.00	0.003196	9.84	2175.10 2175.10	399.94	0.5
Step 2 Step 2	37609.1 37609.1	1%	Prop	13400.00	246.27 246.27	259.058		260.00 260.00	0.003196 0.003196	9.84 9.84	2175.10	399.94 399.94	0.5 0.5
Step 2	37609.1	176	Рюр	13400.00	240.27	259.056		260.00	0.003196	9.04	2175.10	399.94	0.5
Step 2	37243.48	1%	FEMA	13400.00	245.56	258.549		259.04	0.001681	7.84	3227.35	576.09	0.4
Step 2	37243.48	1%	Temp	13400.00	245.56	258.549		259.04	0.001681	7.84	3227.35	576.09	0.4
Step 2	37243.48	1%	Exist	13400.00	245.56	258.549		259.04	0.001681	7.84	3227.35	576.09	0.4
Step 2	37243.48	1%	Prop	13400.00	245.56	258.549		259.04	0.001681	7.84	3227.35	576.09	0.4
Step 2	36979.22	1%	FEMA	15200.00	245.15	258.298		258.63	0.001322	6.21	3739.77	702.38	0.3
Step 2	36979.22	1%	Temp	15200.00	245.15	258.298		258.63	0.001322	6.21	3739.77	702.38	0.3
Step 2 Step 2	36979.22 36979.22	1%	Prop	15200.00 15200.00	245.15 245.15	258.298 258.298		258.63 258.63	0.001322 0.001322	6.21	3739.77 3739.77	702.38 702.38	0.3
Otep 2	30979.22	1 70	Пор	13200.00	243.13	230.230		230.03	0.001322	0.21	3733.77	702.30	0.3
Step 2	36760.16	1%	FEMA	15200.00	244.93	258.038		258.39	0.001120	6.52	3749.88	602.87	0.3
Step 2	36760.16	1%	Temp	15200.00	244.93	258.038		258.39	0.001120	6.52	3749.88	602.87	0.3
Step 2	36760.16	1%	Exist	15200.00	244.93	258.038		258.39	0.001120	6.52	3749.88	602.87	0.3
Step 2	36760.16	1%	Prop	15200.00	244.93	258.038		258.39	0.001120	6.52	3749.88	602.87	0.3
Step 2	36371.19	1%	FEMA	15200.00	242.27	257.649	251.42	258.04	0.000800	5.92	3351.93	361.96	0.2
Step 2	36371.19	1%	Temp	15200.00 15200.00	242.27	257.649	251.42	258.04	0.000800	5.92	3351.93	361.96 361.96	0.2
Step 2 Step 2	36371.19 36371.19	1%	Prop	15200.00	242.27 242.27	257.649 257.649	251.42 251.42	258.04 258.04	0.00800	5.92 5.92	3351.93 3351.93	361.96 361.96	0.2
Jiop Z	5557 1.19	1 70	ТОР	10200.00	242.21	251.049	231.42	250.04	0.000000	5.82	5551.85	301.80	0.2
Step 2	35826.58	1%	FEMA	15200.00	238.99	256.691	252.04	257.40	0.001359	8.15	2945.08	434.95	0.3
Step 2	35826.58	1%	Temp	15200.00	238.99	256.691	252.04	257.40	0.001359	8.15	2945.08	434.95	0.3
Step 2	35826.58	1%	Exist	15200.00	238.99	256.691	252.04	257.40	0.001359	8.15	2945.08	434.95	0.3
Step 2	35826.58	1%	Prop	15200.00	238.99	256.691	252.04	257.40	0.001359	8.15	2945.08	434.95	0.3
0: -	0.000												
Step 2	35760			Bridge									
Step 2	35757.46	1%	FEMA	15200.00	237.64	252.990	252.99	255.74	0.004355	14.45	1501.05	296.35	0.73
Step 2	35757.46	1%	Temp	15200.00	237.64	252.990	252.99	255.74	0.004355	14.45	1501.05	296.35	0.73
Step 2	35757.46	1%	Exist	15200.00	237.64	252.990	252.99	255.74	0.004355	14.45	1501.05	296.35	0.73
Step 2	35757.46	1%	Prop	15200.00	237.64	252.990	252.99	255.74	0.004355	14.45	1501.05	296.35	
Step 2	35492.88	1%	FEMA	15200.00	236.45	251.924	250.84	253.99	0.003335	12.83	1661.63	263.80	0.64
Step 2	35492.88	1%	Temp	15200.00	236.45	251.924	250.84	253.99	0.003335	12.83	1661.63	263.80	0.64
Step 2	35492.88	1%	Exist	15200.00	236.45	251.924	250.84	253.99	0.003335	12.83	1661.63	263.80	0.64
Step 2	35492.88	1%	Prop	15200.00	236.45	251.924	250.84	253.99	0.003335	12.83	1661.63	263.80	0.64
Step 2	35060.04	1%	FEMA	15200.00	236.19	248.873	248.87	252.08	0.005292	15.28	1279.12	220.60	0.79
Step 2	35060.04	1%	Temp	15200.00	236.19	248.873	248.87	252.08	0.005292	15.28	1279.12	220.60	0.79
Step 2	35060.04	1%	Exist	15200.00	236.19	248.873	248.87	252.08	0.005292	15.28	1279.12	220.60	0.7
Step 2	35060.04	1%	Prop	15200.00	236.19	248.873	248.87	252.08	0.005292	15.28	1279.12	220.60	0.79
Step 2	34633.1	1%	FEMA	15200.00	232.98	246.030	245.26	248.98	0.004487	14.47	1324.36	209.57	0.74
Step 2	34633.1	1%	Temp	15200.00	232.98	246.030	245.26	248.98	0.004487	14.47	1324.36	209.57	0.7
Step 2	34633.1	1%	Exist	15200.00	232.98	246.030	245.26	248.98	0.004487	14.47	1324.36	209.57	0.74
Step 2	34633.1	1%	Prop	15200.00	232.98	246.030	245.26	248.98	0.004487	14.47	1324.36	209.57	0.74
Step 2	34347.91	1%	FEMA	15200.00	230.69	245.299	242.51	247.75	0.003329	12.90	1319.78	294.64	0.6
Step 2	34347.91	1%	Temp	15200.00	230.69	245.299	242.51	247.75	0.003329	12.90	1319.78	294.64	0.63
Step 2	34347.91	1%	Exist	15200.00	230.69	245.299	242.51	247.75	0.003329	12.90	1319.78	294.64	
Step 2	34347.91	1%	Prop	15200.00	230.69			247.75	0.003329	12.90	1319.78	294.64	
Step 2	33913.79	1%	FEMA	15200.00	228.25	243.121	241.83	246.04	0.004457	14.61	1617.15	218.35	
Step 2	33913.79	1%	Temp	15200.00	228.25	243.121	241.83	246.04	0.004457	14.61	1617.15	218.35	
Step 2 Step 2	33913.79 33913.79	1%	Prop	15200.00 15200.00	228.25 228.25	243.121 243.121	241.83 241.83	246.04 246.04	0.004457 0.004457	14.61 14.61	1617.15 1617.15	218.35 218.35	
Olep Z	33313.18	1 70	Тор	13200.00	220.25	243.121	241.03	240.04	0.004437	14.01	1017.15	210.33	0.7
Step 2	33648.09	1%	FEMA	15200.00	226.75	242.902		244.90	0.002474	12.23	2098.11	236.88	0.5
Step 2	33648.09	1%	Temp	15200.00	226.75	242.902		244.90	0.002474	12.23	2098.11	236.88	0.5
Step 2	33648.09	1%	Exist	15200.00	226.75	242.902		244.90	0.002474	12.23	2098.11	236.88	0.5
Step 2	33648.09	1%	Prop	15200.00	226.75	242.902		244.90	0.002474	12.23	2098.11	236.88	0.5
Step 2	33440.67	1%	FEMA	15200.00	225.59			244.36	0.002018	11.32	2144.02	219.64	
Step 2	33440.67	1%	Temp	15200.00	225.59	242.612		244.36	0.002018	11.32	2144.02	219.64	0.50
Step 2 Step 2	33440.67 33440.67	1%	Prop	15200.00 15200.00	225.59 225.59	242.612 242.612		244.36 244.36	0.002018 0.002018	11.32 11.32	2144.02 2144.02	219.64 219.64	0.50
2.0p Z	55440.07	1.,3	15	10200.00	220.08	2-72.012		2-4.00	3.002010	11.02	21-1-1.02	213.04	0.5
Step 2	33105.82	1%	FEMA	15200.00	224.19	238.422	238.42	242.96	0.006835	18.15	1352.76	188.59	0.9
Step 2	33105.82	1%	Temp	15200.00	224.19	238.422	238.42	242.96	0.006835	18.15	1352.76	188.59	0.9
Step 2	33105.82	1%	Exist	15200.00	224.19	238.422	238.42	242.96	0.006835	18.15	1352.76	188.59	
Step 2	33105.82	1%	Prop	15200.00	224.19	238.422	238.42	242.96	0.006835	18.15	1352.76	188.59	0.9
01 0	00000	404	FE	4=0000	***	005	00		0.00		105	a	_
Step 2	32880.86	1%	FEMA	15200.00	222.94	235.076	235.08	238.81	0.006565	16.26	1276.25	207.69	
Step 2 Step 2	32880.86 32880.86	1%	Temp Exist	15200.00 15200.00	222.94 222.94	235.076 235.076	235.08 235.08	238.81 238.81	0.006565 0.006565	16.26 16.26	1276.25 1276.25	207.69 207.69	
Step 2	32880.86	1%	Prop	15200.00	222.94	235.076	235.08	238.81	0.006565	16.26	1276.25	207.69	
2.0p Z	02000.00	1.,3	15	10200.00	222.34	200.010	200.00	200.01	3.000000	10.20	1270.20	201.09	0.0
Step 2	32589.3	1%	FEMA	15200.00	221.47	234.267	233.59	236.45	0.004365	13.14	1917.28	357.81	0.7
Step 2	32589.3	1%	Temp	15200.00	221.47	234.267	233.59	236.45	0.004365	13.14	1917.28	357.81	0.7
Step 2	32589.3	1%	Exist	15200.00	221.47	234.267	233.59	236.45	0.004365	13.14	1917.28	357.81	0.73
Otop 2	32589.3	1%	Prop	15200.00	221.47	234.267	233.59	236.45	0.004365	13.14	1917.28	357.81	0.73

Reach	River Sta	Profile	h: Step 2 Profi Plan	Q Total	ed) Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
01 0	00004.40	407	FF144	15200.00	040.54	000.040	000.04	005.04	0.005754	45.50	1005 50	000 50	0.0
Step 2 Step 2	32364.43 32364.43	1%	FEMA Temp	15200.00	219.54 219.54	232.210 232.210	232.21 232.21	235.24 235.24	0.005751 0.005751	15.53 15.53	1985.52 1985.52	386.50 386.50	0.8
Step 2	32364.43	1%	Exist	15200.00	219.54	232.210	232.21	235.24	0.005751	15.53	1985.52	386.50	0.8
Step 2	32364.43	1%	Prop	15200.00	219.54	232.210	232.21	235.24	0.005751	15.53	1985.52	386.50	0.8
Stop 2	32052.73	1%	FEMA	15200.00	217.36	229.014	228.69	232.18	0.006557	14.58	1353.36	363.88	0.8
Step 2 Step 2	32052.73	1%	Temp	15200.00	217.36	229.014	228.69	232.18	0.006557	14.58	1353.36	363.88	0.8
Step 2	32052.73	1%	Exist	15200.00	217.36	229.014	228.69	232.18	0.006557	14.58	1353.36	363.88	0.8
Step 2	32052.73	1%	Prop	15200.00	217.36	229.014	228.69	232.18	0.006557	14.58	1353.36	363.88	0.8
<u> </u>	0.1700.00	101		45000.00	24440	200 700		202.47			242427		
Step 2 Step 2	31732.23 31732.23	1%	FEMA Temp	15200.00 15200.00	214.48 214.48	228.708 228.708		230.17 230.17	0.003600	10.11	2194.87 2194.87	404.62 404.62	0.53
Step 2	31732.23	1%	Exist	15200.00	214.48	228.708		230.17	0.003600	10.11	2194.87	404.62	0.5
Step 2	31732.23	1%	Prop	15200.00	214.48	228.708		230.17	0.003600	10.11	2194.87	404.62	0.5
Step 2	31446.08	1%	FEMA	16500.00	213.56	228.340		229.36	0.001730	9.50	2637.97	415.49	0.4
Step 2 Step 2	31446.08 31446.08	1%	Temp Exist	16500.00 16500.00	213.56 213.56	228.340 228.340		229.36 229.36	0.001730 0.001730	9.50 9.50	2637.97 2637.97	415.49 415.49	0.4
Step 2	31446.08	1%	Prop	16500.00	213.56	228.340		229.36	0.001730	9.50	2637.97	415.49	0.4
·													
Step 2	31143.84	1%	FEMA	16500.00	212.06	227.086		228.70	0.002366	11.41	2767.91	428.44	0.54
Step 2	31143.84	1%	Temp	16500.00	212.06	227.086		228.70	0.002366	11.41	2767.91	428.44	0.5
Step 2 Step 2	31143.84 31143.84	1%	Prop	16500.00 16500.00	212.06 212.06	227.086 227.086		228.70 228.70	0.002366 0.002366	11.41	2767.91 2767.91	428.44 428.44	0.54
Ciop Z	01140.04	170	Tiop	15500.00	212.00	221.000		220.10	0.002000	11.41	2101.31	420.44	0.5
Step 2	30807.38	1%	FEMA	16500.00	212.26	223.945	223.94	227.32	0.006616	15.77	1786.05	331.34	0.87
Step 2	30807.38	1%	Temp	16500.00	212.26	223.945	223.94	227.32	0.006616	15.77	1786.05	331.34	0.87
Step 2	30807.38	1%	Exist	16500.00	212.26	223.945	223.94	227.32	0.006616	15.77	1786.05	331.34	0.87
Step 2	30807.38	1%	Prop	16500.00	212.26	223.945	223.94	227.32	0.006616	15.77	1786.05	331.34	0.87
Step 2	30379.15	1%	FEMA	16500.00	209.15	221.151	221.15	224.38	0.006296	15.51	1898.38	370.17	0.85
Step 2	30379.15	1%	Temp	16500.00	209.15	221.151	221.15	224.38	0.006296	15.51	1898.38	370.17	0.85
Step 2	30379.15	1%	Exist	16500.00	209.15	221.151	221.15	224.38	0.006296	15.51	1898.38	370.17	0.85
Step 2	30379.15	1%	Prop	16500.00	209.15	221.151	221.15	224.38	0.006296	15.51	1898.38	370.17	0.85
Step 2	29920.18	1%	FEMA	16500.00	206.57	218.087	217.88	219.76	0.004524	12.27	2643.44	681.71	0.71
Step 2	29920.18	1%	Temp	16500.00	206.57	218.087	217.88	219.76	0.004524	12.27	2643.44	681.71	0.71
Step 2	29920.18	1%	Exist	16500.00	206.57	218.087	217.88	219.76	0.004524	12.27	2643.44	681.71	0.71
Step 2	29920.18	1%	Prop	16500.00	206.57	218.087	217.88	219.76	0.004524	12.27	2643.44	681.71	0.71
Step 2	29461.16	1%	FEMA	16500.00	204.69	216.817	215.78	217.84 217.84	0.003833	10.74 10.74	3223.13 3223.13	660.42	0.65
Step 2 Step 2	29461.16 29461.16	1%	Temp Exist	16500.00 16500.00	204.69 204.69	216.817 216.817	215.78 215.78	217.84	0.003833	10.74	3223.13	660.42 660.42	0.65
Step 2	29461.16	1%	Prop	16500.00	204.69	216.817	215.78	217.84	0.003833	10.74	3223.13	660.42	0.65
·													
Step 2	29405.71	1%	FEMA	16500.00	204.19	216.694	213.97	217.59	0.002370	9.50	3678.47	869.49	0.52
Step 2	29405.71	1%	Temp	16500.00	204.19	216.694	213.97	217.59	0.002370	9.50	3678.47	869.49	0.52
Step 2 Step 2	29405.71 29405.71	1%	Exist Prop	16500.00 16500.00	204.19 204.19	216.694 216.694	213.97 213.97	217.59 217.59	0.002370 0.002370	9.50 9.50	3678.47 3678.47	869.49 869.49	0.52 0.52
Step 2	29036.83	1%	FEMA	17700.00	202.92	215.563	213.81	216.36	0.003699	10.06	2897.01	596.33	0.53
Step 2	29036.83	1%	Temp	17700.00	202.92	215.563	213.81	216.36	0.003699	10.06	2897.01	596.33	0.53
Step 2 Step 2	29036.83 29036.83	1%	Exist Prop	17700.00 17700.00	202.92 202.92	215.563 215.563	213.81 213.81	216.36 216.36	0.003699 0.003699	10.06 10.06	2897.01 2897.01	596.33 596.33	0.53 0.53
Otop 2	20000.00	170	Пор	17700.00	202.02	210.000	210.01	210.00	0.000000	10.00	2007.01	000.00	0.50
Step 2	28818.5	1%	FEMA	17700.00	201.42	215.391	212.33	215.86	0.001127	7.66	4593.53	899.47	0.38
Step 2	28818.5	1%	Temp	17700.00	201.42	215.391	212.33	215.86	0.001127	7.66	4593.53	899.47	0.38
Step 2	28818.5	1%	Exist	17700.00	201.42	215.391	212.33	215.86	0.001127	7.66	4593.53	899.47	0.38
Step 2	28818.5	1%	Prop	17700.00	201.42	215.391	212.33	215.86	0.001127	7.66	4593.53	899.47	0.38
Step 2	28532.16	1%	FEMA	17700.00	201.17	212.812	212.81	215.11	0.005206	14.52	2195.20	503.28	0.79
Step 2	28532.16	1%	Temp	17700.00	201.17	212.812	212.81	215.11	0.005206	14.52	2195.20	503.28	0.79
Step 2	28532.16	1%	Exist	17700.00	201.17	212.812	212.81	215.11	0.005206	14.52	2195.20	503.28	0.79
Step 2	28532.16	1%	Prop	17700.00	201.17	212.812	212.81	215.11	0.005206	14.52	2195.20	503.28	0.79
Step 2	28203.66	1%	FEMA	17700.00	200.04	210.359		211.52	0.004331	12.03	2883.95	749.54	0.70
Step 2	28203.66	1%	Temp	17700.00	200.04	210.374		211.52	0.004286	11.98	2895.67	749.79	0.70
Step 2	28203.66	1%	Exist	17700.00	200.04	210.371		211.52	0.004294	11.99	2893.57	749.75	0.70
Step 2	28203.66	1%	Prop	17700.00	200.04	210.371		211.52	0.004294	11.99	2893.54	749.75	0.70
Sten 2	27730.86	1%	FEMA	17700.00	198.42	209.371	208.36	209.97	0.002332	8.80	4338.64	1131.54	0.52
Step 2 Step 2	27730.86	1%	Temp	17700.00	198.42	209.371	208.36	210.01	0.002332	8.63	4420.41	1131.54	0.52
Step 2	27730.86	1%	Exist	17700.00	198.42	209.431	208.36	210.01	0.002237	8.66	4406.92	1131.97	0.5
Step 2	27730.86	1%	Prop	17700.00	198.42	209.431	208.36	210.01	0.002237	8.66	4406.75	1131.97	0.5
n	070:	101			,	95							
Step 2	27319.62 27319.62	1%	FEMA	17700.00 17700.00	196.99 196.99	209.457 209.521		209.53 209.59	0.000291 0.000282	3.47 3.43	9166.95 9265.84	1531.64 1536.04	0.19
Step 2 Step 2	27319.62	1%	Temp Exist	17700.00	196.99	209.521		209.59	0.000282	3.43	9265.84 9249.41	1535.31	0.19
Step 2	27319.62	1%	Prop	17700.00	196.99	209.511		209.58	0.000283	3.43	9249.41	1535.30	0.11
Step 2	26954.57	1%	FEMA	17700.00	194.06	209.407		209.44	0.000102	2.32	14198.13	1689.04	0.1
Chan 2	26954.57	1%	Temp	17700.00	194.06	209.473		209.50	0.000100	2.30	14309.14	1691.61	0.1
Step 2	26954.57	1%	Exist Prop	17700.00 17700.00	194.06 194.06	209.462 209.462		209.49 209.49	0.000101 0.000101	2.30	14290.71 14290.51	1691.19 1691.18	0.1
Step 2	26954 57								0.000101	2.00	. 7230.31	1001.10	. 0.1
	26954.57	1%	Пор	17700.00									
Step 2	26954.57 26717.64	1%	FEMA Temp	17700.00	191.79	209.362		209.41	0.000141	3.15	15470.08	1550.19	0.14

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
04	20747.04	40/	Dran	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	0.14
Step 2	26717.64	1%	Prop	17700.00	191.79	209.417		209.46	0.000138	3.13	15555.85	1551.24	0.14
Step 2	26347.09	1%	FEMA	17700.00	191.83	209.324	200.30	209.37	0.000099	2.70	16435.89	1474.94	0.12
Step 2	26347.09	1%	Temp	17700.00	191.83	209.324	200.30	209.44	0.000098	2.68	16534.86	1475.63	0.12
Step 2	26347.09	1%	Exist	17700.00	191.83	209.380	200.30	209.43	0.000098	2.68	16518.42	1475.51	0.12
Step 2	26347.09	1%	Prop	17700.00	191.83	209.380	200.30	209.43	0.000098	2.68	16518.21	1475.51	0.12
Step 2	25943.95	1%	FEMA	17700.00	189.69	209.164	198.79	209.30	0.000183	3.82	8523.35	1550.16	0.16
Step 2	25943.95	1%	Temp	17700.00	189.69	209.233	198.79	209.37	0.000180	3.80	8568.17	1551.77	0.16
Step 2	25943.95	1%	Exist	17700.00	189.69	209.221	198.79	209.35	0.000180	3.80	8560.73	1551.50	0.16
Step 2	25943.95	1%	Prop	17700.00	189.69	209.221	198.79	209.35	0.000180	3.80	8560.64	1551.50	0.16
Step 2	25807			Bridge									
0. 0		101		47700.00	400.00		400 70	007.00		= 0.4	4000.00	1010.00	
Step 2	25712.36	1%	FEMA	17700.00	189.69	207.494	199.73	207.83	0.000443	5.61	4932.23	1612.26	0.25
Step 2	25712.36	1%	Temp	17700.00	189.69	207.587	199.73	207.92	0.000433	5.57	4969.54	1614.61	0.24
Step 2	25712.36	1%	Exist	17700.00	189.69	207.572	199.73	207.91	0.000434	5.58	4963.37	1614.22	0.24
Step 2	25712.36	1%	Prop	17700.00	189.69	207.571	199.73	207.91	0.000434	5.58	4963.29	1614.21	0.24
Step 2	25288.21	1%	FEMA	17700.00	186.19	207.412		207.64	0.000335	5.32	7037.36	780.51	0.22
Step 2	25288.21	1%	Temp	17700.00	186.19	207.508		207.74	0.000333	5.28	7037.50	781.25	0.22
Step 2	25288.21	1%	Exist	17700.00	186.19	207.492		207.74	0.000320	5.29	7079.22	781.12	0.21
Step 2	25288.21	1%	Prop	17700.00	186.19	207.492		207.72	0.000329	5.29	7079.10	781.12	0.21
2.0p Z	20200.21	.,,	sp	17750.00	100.18	201.402		201.12	0.000028	3.29	1010.10	101.12	0.21
Step 2	24922.38	1%	FEMA	17700.00	185.28	207.226		207.53	0.000284	5.12	6256.10	475.97	0.20
Step 2	24922.38	1%	Temp	17700.00	185.28	207.324		207.62	0.000279	5.09	6302.94	477.02	0.20
Step 2	24922.38	1%	Exist	17700.00	185.28	207.308		207.60	0.000210	5.10	6295.19	476.85	0.20
Step 2	24922.38	1%	Prop	17700.00	185.28	207.308		207.60	0.000280	5.10	6295.08	476.85	0.20
Step 2	24673.85	1%	FEMA	17700.00	184.67	207.023		207.43	0.000410	6.10	5247.10	399.31	0.24
Step 2	24673.85	1%	Temp	17700.00	184.67	207.125		207.53	0.000401	6.06	5288.05	400.21	0.24
Step 2	24673.85	1%	Exist	17700.00	184.67	207.108		207.51	0.000403	6.06	5281.27	400.06	0.24
Step 2	24673.85	1%	Prop	17700.00	184.67	207.108		207.51	0.000403	6.06	5281.18	400.06	0.24
Step 2	24310.02	1%	FEMA	17700.00	182.77	206.921		207.30	0.000318	5.64	5012.10	361.41	0.22
Step 2	24310.02	1%	Temp	17700.00	182.77	207.025		207.40	0.000314	5.59	5050.01	362.33	0.22
Step 2	24310.02	1%	Exist	17700.00	182.77	207.008		207.38	0.000312	5.61	5043.60	362.17	0.22
Step 2	24310.02	1%	Prop	17700.00	182.77	207.007		207.38	0.000312	5.61	5043.52	362.17	0.22
0. 0		101		47700.00	100.00			007.47		= 0.4	5510 50	202.01	
Step 2	23954.15	1%	FEMA	17700.00	182.89	206.882		207.17	0.000285	5.34	5540.76	380.61	0.20
Step 2	23954.15	1%	Temp	17700.00	182.89	206.987		207.27	0.000280	5.30	5580.71	381.28	0.20
Step 2	23954.15	1%	Exist	17700.00	182.89	206.970		207.25	0.000281	5.30	5574.37	381.18	0.20
Step 2	23954.15	1%	Prop	17700.00	182.89	206.970		207.25	0.000281	5.30	5574.28	381.18	0.20
Step 2	23815.18	1%	Temp	17700.00	181.09	206.919		207.22	0.000273	5.47	5640.30	411.94	0.20
Step 2	23815.18	1%	Exist	17700.00	181.09	206.902		207.22	0.000273	5.48	5633.36	411.74	0.20
Step 2	23815.18	1%	Prop	17700.00	181.09	206.902		207.21	0.000273	5.48	5633.27	411.73	0.20
Otop 2	20010.10	170	Пор	17700.00	101.03	200.302		207.21	0.000270	0.40	3033.27	411.70	0.20
Step 2	23744.4	1%	Temp	17700.00	181.93	206.866		207.20	0.000289	5.58	5542.35	481.95	0.21
Step 2	23744.4	1%	Exist	17700.00	181.93	206.849		207.18	0.000290	5.58	5535.14	424.21	0.21
Step 2	23744.4	1%	Prop	17700.00	181.93	206.848		207.18	0.000290	5.58	5535.03	481.60	0.21
·													
Step 2	23685.14	1%	Temp	17700.00	180.64	206.915		207.16	0.000217	4.90	6388.67	452.98	0.18
Step 2	23685.14	1%	Exist	17700.00	180.64	206.829		207.17	0.000284	5.60	5697.42	428.63	0.21
Step 2	23685.14	1%	Prop	17700.00	180.64	206.837		207.16	0.000277	5.53	5753.42	428.71	0.20
Step 2	23628.97	1%	Temp	17700.00	181.20	206.840		207.14	0.000249	5.37	6214.78	449.27	0.19
Step 2	23628.97	1%	Exist	17700.00	181.20	206.837		207.14	0.000266	5.42	6139.36	449.24	0.20
Step 2	23628.97	1%	Prop	17700.00	181.20	206.841		207.14	0.000249	5.37	6215.62	449.29	0.19
0: -	00-1-	1404											
Step 2	23542.47	1%	FEMA	17700.00	181.44	206.935	194.94	207.04	0.000120	3.60	10003.14	887.93	0.13
Step 2	23542.47	1%	Temp	17700.00	181.44	206.963	194.94	207.06	0.000119	3.59	10021.93	888.54	0.13
Step 2	23542.47	1%	Exist	17700.00	181.44	206.963	194.94	207.06	0.000119	3.59	10021.93	888.54	0.13
Step 2	23542.47	1%	Prop	17700.00	181.44	206.965	194.94	207.07	0.000119	3.59	10023.21	888.58	0.13
Stor 2	23470.53	1%	Tomo	17700.00	180.53	206.975	190.74	207.04	0.000054	2.52	11617.18	1155.35	0.09
Step 2 Step 2	23470.53	1%	Temp Exist	17700.00	180.53	206.975	190.74 190.74	207.04	0.000054	2.52	11617.18 11617.18	1155.35	0.09
Step 2	23470.53	1%	Prop	17700.00	180.53	206.975	190.74	207.04	0.000054	2.52	11617.18	1155.35	0.09
Jiep Z	25470.53	1 70	ТОР	17700.00	100.53	200.977	190.74	207.04	0.000034	2.52	11010.59	1100.07	0.09
Step 2	23384.9	1%	Temp	17700.00	180.24	206.894	193.84	207.03	0.000132	3.97	10443.96	1309.23	0.14
Step 2	23384.9	1%	Exist	17700.00	180.24	206.894	193.84	207.03	0.000132	3.97	10443.96	1309.23	0.14
Step 2	23384.9	1%	Prop	17700.00	180.24	206.895	193.84	207.03	0.000132	3.98	10432.99	1309.25	0.14
				1 55.50		22.230		2050		2.30	52.50	222.20	2
Step 2	23319.22	1%	Temp	17700.00	179.89	206.906	194.64	207.01	0.000108	3.50	9796.52	1392.70	0.13
Step 2	23319.22	1%	Exist	17700.00	179.89	206.906	194.64	207.01	0.000108	3.50	9796.52	1392.70	0.13
Step 2	23319.22	1%	Prop	17700.00	179.89	206.910	194.73	207.01	0.000111	3.45	9790.16	1392.76	0.12
Step 2	23243	1%	Temp	17700.00	183.00	206.861	196.37	207.00	0.000160	4.27	8372.58	1351.11	0.16
Step 2	23243	1%	Exist	17700.00	183.00	206.861	196.37	207.00	0.000160	4.27	8372.58	1351.11	0.16
Step 2	23243	1%	Prop	17700.00	183.00	206.861	196.37	207.00	0.000160	4.27	8372.58	1351.11	0.16
Step 2	23188.9	1%	FEMA	17700.00	180.00	206.859	191.55	206.99	0.000110	3.72	8471.65	616.88	0.13
Step 2	23188.9	1%	Temp	17700.00	180.00	206.859	191.55	206.99	0.000110		8471.65	616.88	0.13
Step 2	23188.9	1%	Exist	17700.00	180.00	206.859	191.55	206.99	0.000110	3.72	8471.65	616.88	0.13
Step 2	23188.9	1%	Prop	17700.00	180.00	206.859	191.55	206.99	0.000110	3.72	8471.65	616.88	0.13
Step 2	23123			Bridge									
0	00	100											
Step 2	23066.57	1%	FEMA	17700.00	180.00	206.405	191.23	206.62	0.000151	4.43	8938.18	539.37	0.15

				le: 1% (Continu									
Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
01 0	00000 57	40/	T	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	0.45
Step 2	23066.57	1%	Temp	17700.00	180.00	206.405	191.23	206.62	0.000151	4.43	8938.18	539.37	0.15
Step 2	23066.57	1%	Exist	17700.00	180.00	206.405	191.23	206.62	0.000151	4.43	8938.18	539.37	0.15
Step 2	23066.57	1%	Prop	17700.00	180.00	206.405	191.23	206.62	0.000151	4.43	8938.18	539.37	0.15
Step 2	22716.82	1%	FEMA	17700.00	173.79	206.002	187.30	206.48	0.000243	6.00	4611.84	540.48	0.19
Step 2	22716.82	1%	Temp	17700.00	173.79	206.002	187.30	206.48	0.000243	6.00	4611.84	540.48	0.19
	22716.82	1%	Exist	17700.00	173.79	206.002	187.30	206.48	0.000243	6.00	4611.84	540.48	0.19
Step 2	22716.82	1%	Prop	17700.00	173.79	206.002	187.30	206.48	0.000243	6.00	4611.84	540.48	0.19
Step 2	22/10.02	176	Ргор	17700.00	173.79	206.002	167.30	200.46	0.000243	6.00	4011.04	540.46	0.19
Step 2	22641			Bridge									
Step 2	22041			Bridge									
Step 2	22575.76	1%	FEMA	17700.00	174.19	193.223	186.82	195.22	0.002505	11.33	1562.79	263.00	0.49
Step 2	22575.76	1%	Temp	17700.00	174.19	193.223	186.82	195.22	0.002505	11.33	1562.79	263.00	0.49
Step 2	22575.76	1%	Exist	17700.00	174.19	193.223	186.82	195.22	0.002505	11.33	1562.79	263.00	0.49
Step 2	22575.76	1%	Prop	17700.00	174.19	193.223	186.82	195.22	0.002505	11.33	1562.79	263.00	0.49
Otop 2	22070.70	170	Пор	17700.00	174.15	130.220	100.02	100.22	0.002000	11.00	1002.75	200.00	0.40
Step 2	22183.62	1%	FEMA	17700.00	176.40	191.869		193.98	0.003890	13.36	2593.15	318.92	0.63
Step 2	22183.62	1%	Temp	17700.00	176.40	191.869		193.98	0.003890	13.36	2593.15	318.92	0.63
Step 2	22183.62	1%	Exist	17700.00	176.40	191.869		193.98	0.003890	13.36	2593.15	318.92	0.63
Step 2	22183.62	1%	Prop	17700.00	176.40	191.869		193.98	0.003890	13.36	2593.15		0.63
		.,,,	1										
Step 2	21765.15	1%	FEMA	17700.00	175.03	190.944		192.44	0.002742	11.25	3014.02	342.97	0.53
Step 2	21765.15	1%	Temp	17700.00	175.03	190.944		192.44	0.002742	11.25	3014.02	342.97	0.53
Step 2	21765.15	1%	Exist	17700.00	175.03	190.944		192.44	0.002742	11.25	3014.02	342.97	0.53
Step 2	21765.15	1%	Prop	17700.00	175.03	190.944		192.44	0.002742	11.25	3014.02	342.97	0.53
, i			T .		5.53			.=		0			
Step 2	21385.58	1%	FEMA	17700.00	173.78	189.912		191.36	0.002841	11.59	3342.08	393.98	0.53
Step 2	21385.58	1%	Temp	17700.00	173.78	189.912		191.36	0.002841	11.59	3342.08	393.98	0.53
Step 2	21385.58	1%	Exist	17700.00	173.78	189.912		191.36	0.002841	11.59	3342.08	393.98	0.53
Step 2	21385.58	1%	Prop	17700.00	173.78	189.912		191.36	0.002841	11.59	3342.08	393.98	0.53
, i			T .		55			0					
Step 2	20947.18	1%	FEMA	17700.00	172.35	185.019	185.02	189.06	0.009410	17.57	1626.31	221.16	0.93
Step 2	20947.18	1%	Temp	17700.00	172.35	185.019	185.02	189.06	0.009410	17.57	1626.31	221.16	0.93
Step 2	20947.18	1%	Exist	17700.00	172.35	185.019	185.02	189.06	0.009410	17.57	1626.31	221.16	0.93
Step 2	20947.18	1%	Prop	17700.00	172.35	185.019	185.02	189.06	0.009410	17.57	1626.31	221.16	0.93
·			i i										
Step 2	20597.38	1%	FEMA	17700.00	171.19	184.020		186.05	0.003997	11.56	1714.26	195.32	0.61
Step 2	20597.38	1%	Temp	17700.00	171.19	184.020		186.05	0.003997	11.56	1714.26	195.32	0.61
Step 2	20597.38	1%	Exist	17700.00	171.19	184.020		186.05	0.003997	11.56	1714.26	195.32	0.61
Step 2	20597.38	1%	Prop	17700.00	171.19	184.020		186.05	0.003997	11.56	1714.26	195.32	0.61
·			i i										
Step 2	20324.68	1%	FEMA	17700.00	166.32	181.936		184.76	0.004934	13.82	1567.25	171.02	0.68
Step 2	20324.68	1%	Temp	17700.00	166.32	181.936		184.76	0.004934	13.82	1567.25	171.02	0.68
Step 2	20324.68	1%	Exist	17700.00	166.32	181.936		184.76	0.004934	13.82	1567.25	171.02	0.68
Step 2	20324.68	1%	Prop	17700.00	166.32	181.936		184.76	0.004934	13.82	1567.25	171.02	0.68
Step 2	19987.46	1%	FEMA	17700.00	165.34	180.222	177.77	183.12	0.004807	13.93	1595.58	211.60	0.68
Step 2	19987.46	1%	Temp	17700.00	165.34	180.222	177.77	183.12	0.004807	13.93	1595.58	211.60	0.68
Step 2	19987.46	1%	Exist	17700.00	165.34	180.222	177.77	183.12	0.004807	13.93	1595.58	211.60	0.68
Step 2	19987.46	1%	Prop	17700.00	165.34	180.222	177.77	183.12	0.004807	13.93	1595.58	211.60	0.68
Step 2	19571.85	1%	FEMA	17700.00	163.22	178.579		181.24	0.004033	13.39	1653.29	175.52	0.63
Step 2	19571.85	1%	Temp	17700.00	163.22	178.579		181.24	0.004033	13.39	1653.29	175.52	0.63
Step 2	19571.85	1%	Exist	17700.00	163.22	178.579		181.24	0.004033	13.39	1653.29	175.52	0.63
Step 2	19571.85	1%	Prop	17700.00	163.22	178.579		181.24	0.004033	13.39	1653.29	175.52	0.63
Step 2	19210.74	1%	FEMA	17700.00	161.57	177.851		179.81	0.002845	11.78	2121.41	217.81	0.54
Step 2	19210.74	1%	Temp	17700.00	161.57	177.851		179.81	0.002845	11.78	2121.41	217.81	0.54
Step 2	19210.74	1%	Exist	17700.00	161.57	177.851		179.81	0.002845	11.78	2121.41	217.81	0.54
Step 2	19210.74	1%	Prop	17700.00	161.57	177.851		179.81	0.002845	11.78	2121.41	217.81	0.54
0	105	100											
Step 2	18760.41	1%	FEMA	17700.00	159.52	177.247		178.64	0.001790	9.87	2561.62	278.57	0.43
Step 2	18760.41	1%	Temp	17700.00	159.52	177.247		178.64	0.001790	9.87	2561.62	278.57	0.43
Step 2	18760.41	1%	Exist	17700.00	159.52	177.247		178.64	0.001790	9.87	2561.62	278.57	0.43
Step 2	18760.41	1%	Prop	17700.00	159.52	177.247		178.64	0.001790	9.87	2561.62	278.57	0.43
Cton C	10500.07	40/	EEM4	47700.00	450.50	470 751		470.40	0.004000	10.00	2000.01	070 **	2
Step 2	18508.27	1%	FEMA	17700.00	159.58	176.751		178.16	0.001983	10.06	2608.64	279.44	0.45
Step 2	18508.27	1%	Temp	17700.00	159.58	176.751		178.16	0.001983	10.06	2608.64	279.44	0.45
Step 2	18508.27	1%	Exist	17700.00	159.58	176.751		178.16	0.001983	10.06	2608.64	279.44	0.45
Step 2	18508.27	1%	Prop	17700.00	159.58	176.751		178.16	0.001983	10.06	2608.64	279.44	0.45
Stop 2	18249.71	1%	FEMA	17900.00	159.39	176.762		177.58	0.001275	7.85	3279.89	312.28	0.36
Step 2	18249.71	1%		17900.00	159.39	176.762		177.58	0.001275	7.85	3279.89	312.28	0.36
Step 2	18249.71	1%	Temp Exist	17900.00	159.39	176.762		177.58	0.001275	7.85	3279.89	312.28	0.36
Step 2 Step 2	18249.71	1%	Prop	17900.00	159.39	176.762		177.58	0.001275	7.85	3279.89	312.28	0.36
Stop 2	10243.71	170	ТОР	11300.00	103.33	170.702		111.00	0.001275	7.00	3213.09	312.20	0.36
Step 2	17797.83	1%	FEMA	17900.00	158.27	175.249		176.70	0.002734	10.50	2579.15	245.17	0.47
Step 2	17797.83	1%	Temp	17900.00	158.27	175.249		176.70	0.002734	10.50	2579.15	245.17	0.47
	17797.83	1%	Exist	17900.00	158.27	175.249		176.70	0.002734	10.50	2579.15	245.17	0.47
Step 2 Step 2	17797.83	1%	Prop	17900.00	158.27	175.249		176.70	0.002734	10.50	2579.15	245.17	0.47
этер 2	11/91.03	1 70	ПОР	17900.00	100.27	170.249		170.70	0.002134	10.50	20/9.15	∠45.17	0.47
Step 2	17395.32	1%	FEMA	17900.00	157.27	174.334		175.61	0.002459	9.94	2769.98	257.47	0.44
Step 2	17395.32	1%	Temp	17900.00	157.27	174.334		175.61	0.002459	9.94	2769.98	257.47	0.44
Step 2	17395.32	1%	Exist	17900.00	157.27	174.334		175.61	0.002459	9.94	2769.98	257.47	0.44
Step 2	17395.32	1%	Prop	17900.00	157.27	174.334		175.61	0.002459	9.94	2769.98	257.47	0.44
Jiop Z	17333.32	170	ТОР	11300.00	101.21	174.334		173.01	0.002409	9.94	2103.30	231.41	0.44
Step 2	17045.65	1%	FEMA	17900.00	156.41	172.406		174.46	0.003932	12.01	2091.21	259.28	0.55
Step 2	17045.65	1%	Temp	17900.00	156.41	172.406		174.46	0.003932	12.01	2091.21	259.28	0.55
Step 2	17045.65	1%	Exist	17900.00	156.41	172.406		174.46	0.003932	12.01	2091.21	259.28	0.55
Oteh 2	17040.00	1 70	LAIDI	17900.00	100.41	172.406		174.40	0.003932	12.07	2031.27	∠09.28	U.05

Reach	River: Winters River Sta	Run Reach Profile	: Step 2 Profi	le: 1% (Continu	ed) Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reacii	Niver Sta	Fiolile	Fiaii	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	Floude # Cili
Step 2	17045.65	1%	Prop	17900.00	156.41	172.406		174.46	0.003932	12.01	2091.21	259.28	0.55
Step 2	16745.88	1%	FEMA	17900.00	155.66	172.234		173.26	0.002316	9.31	3637.11	443.43	0.43
Step 2 Step 2	16745.88 16745.88	1%	Temp Exist	17900.00 17900.00	155.66 155.66	172.234 172.234		173.26 173.26	0.002316 0.002316	9.31 9.31	3637.11 3637.11	443.43 443.43	0.43 0.43
Step 2	16745.88	1%	Prop	17900.00	155.66	172.234		173.26	0.002316	9.31	3637.11	443.43	0.43
5.07		1,74	1.14										
Step 2	16457.42	1%	FEMA	17900.00	154.94	171.042		172.42	0.003463	11.07	3363.65	465.05	0.51
Step 2	16457.42	1%	Temp	17900.00	154.94	171.042		172.42	0.003463	11.07	3363.65	465.05	0.51
Step 2	16457.42	1%	Exist	17900.00	154.94	171.042		172.42	0.003463	11.07	3363.65	465.05	0.51
Step 2	16457.42	1%	Prop	17900.00	154.94	171.042		172.42	0.003463	11.07	3363.65	465.05	0.51
Step 2	16033.69	1%	FEMA	17900.00	153.89	170.974		171.38	0.001050	6.37	5878.17	628.04	0.29
Step 2	16033.69	1%	Temp	17900.00	153.89	170.974		171.38	0.001050	6.37	5878.17	628.04	0.29
Step 2	16033.69	1%	Exist	17900.00	153.89	170.974		171.38	0.001050	6.37	5878.17	628.04	0.29
Step 2	16033.69	1%	Prop	17900.00	153.89	170.974		171.38	0.001050	6.37	5878.17	628.04	0.29
Step 2	15588.66	1%	FEMA	17900.00	152.07	170.037		170.83	0.001426	7.84	3498.02	305.51	0.34
Step 2	15588.66 15588.66	1%	Temp Exist	17900.00 17900.00	152.07 152.07	170.037 170.037		170.83 170.83	0.001426 0.001426	7.84 7.84	3498.02 3498.02	305.51 305.51	0.34 0.34
Step 2 Step 2	15588.66	1%	Prop	17900.00	152.07	170.037		170.83	0.001426	7.84	3498.02	305.51	0.34
Olop 2	10000.00	170	Пор	17300.00	102.01	170.007		170.00	0.001420	7.04	0400.02	300.51	0.04
Step 2	15176.39	1%	FEMA	17900.00	151.38	167.618		169.76	0.004343	12.60	2192.33	258.26	0.58
Step 2	15176.39	1%	Temp	17900.00	151.38	167.618		169.76	0.004343	12.60	2192.33	258.26	0.58
Step 2	15176.39	1%	Exist	17900.00	151.38	167.618		169.76	0.004343	12.60	2192.33	258.26	0.58
Step 2	15176.39	1%	Prop	17900.00	151.38	167.618		169.76	0.004343	12.60	2192.33	258.26	0.58
Stor 2	14000.04	10/	EENAA	47000.00	454.00	400 700		467.07	0.000500	0.00	0540.40	205.00	<u> </u>
Step 2 Step 2	14680.04 14680.04	1%	FEMA Temp	17900.00 17900.00	151.38 151.38	166.793 166.793		167.87 167.87	0.002560 0.002560	9.26 9.26	2519.16 2519.16	285.02 285.02	0.45 0.45
Step 2	14680.04	1%	Exist	17900.00	151.38	166.793		167.87	0.002560	9.26	2519.16	285.02	0.45
Step 2	14680.04	1%	Prop	17900.00	151.38	166.793		167.87	0.002560	9.26	2519.16	285.02	0.45
Step 2	14315.87	1%	FEMA	17900.00	149.88	165.609		166.95	0.002708	9.81	2172.45	219.20	0.46
Step 2	14315.87	1%	Temp	17900.00	149.88	165.609		166.95	0.002708	9.81	2172.45	219.20	0.46
Step 2	14315.87	1%	Exist	17900.00	149.88	165.609		166.95	0.002708	9.81	2172.45	219.20	0.46
Step 2	14315.87	1%	Prop	17900.00	149.88	165.609		166.95	0.002708	9.81	2172.45	219.20	0.46
Step 2	13957.62	1%	FEMA	17900.00	147.55	164.572		166.00	0.002702	10.22	2666.65	323.60	0.47
Step 2	13957.62	1%	Temp	17900.00	147.55	164.572		166.00	0.002702	10.22	2666.65	323.60	0.47
Step 2	13957.62	1%	Exist	17900.00	147.55	164.572		166.00	0.002702	10.22	2666.65	323.60	0.47
Step 2	13957.62	1%	Prop	17900.00	147.55	164.572		166.00	0.002702	10.22	2666.65	323.60	0.47
Step 2	13600.28	1%	FEMA	17900.00	145.93	163.000		164.91	0.003414	11.49	2115.48	253.61	0.52
Step 2	13600.28	1%	Temp	17900.00	145.93	163.000		164.91	0.003414	11.49	2115.48	253.61	0.52
Step 2	13600.28 13600.28	1%	Prop	17900.00 17900.00	145.93 145.93	163.000 163.000		164.91 164.91	0.003414 0.003414	11.49 11.49	2115.48 2115.48	253.61 253.61	0.52 0.52
Step 2	13000.20	1 70	Flup	17900.00	140.90	103.000		104.91	0.003414	11.49	2110.40	255.01	0.52
Step 2	13441.14	1%	FEMA	17900.00	145.31	162.072		164.29	0.004160	12.35	1673.72	161.85	0.57
Step 2	13441.14	1%	Temp	17900.00	145.31	162.072		164.29	0.004160	12.35	1673.72	161.85	0.57
Step 2	13441.14	1%	Exist	17900.00	145.31	162.072		164.29	0.004160	12.35	1673.72	161.85	0.57
Step 2	13441.14	1%	Prop	17900.00	145.31	162.072		164.29	0.004160	12.35	1673.72	161.85	0.57
Step 2	13108.55	1%	FEMA	17900.00	144.46	160.000		162.66	0.005500	14.06	1586.80	173.43	0.66
Step 2 Step 2	13108.55 13108.55	1%	Temp Exist	17900.00 17900.00	144.46 144.46	160.000 160.000		162.66 162.66	0.005500 0.005500	14.06 14.06	1586.80 1586.80	173.43 173.43	0.66 0.66
Step 2	13108.55	1%	Prop	17900.00	144.46	160.000		162.66	0.005500	14.06	1586.80	173.43	0.66
			-										
Step 2	12720.68	1%	FEMA	17900.00	141.62	160.770		161.27	0.001011	6.69	3612.28	382.36	0.29
Step 2	12720.68	1%	Temp	17900.00	141.62	160.770		161.27	0.001011	6.69	3612.28	382.36	0.29
Step 2	12720.68	1%	Exist	17900.00	141.62	160.770		161.27	0.001011	6.69	3612.28	382.36	0.29
Step 2	12720.68	1%	Prop	17900.00	141.62	160.770		161.27	0.001011	6.69	3612.28	382.36	0.29
Step 2	12358.88	1%	FEMA	17900.00	139.89	160.376		160.90	0.001022	6.99	3625.33	338.88	0.29
Step 2	12358.88	1%	Temp	17900.00	139.89	160.376		160.90		6.99	3625.33	338.88	0.29
Step 2	12358.88	1%	Exist	17900.00	139.89	160.376		160.90	0.001022	6.99	3625.33	338.88	0.29
Step 2	12358.88	1%	Prop	17900.00	139.89	160.376		160.90	0.001022	6.99	3625.33	338.88	0.29
Step 2	12064.04	1%	FEMA	17900.00	137.69	158.924	154.55	160.28	0.002174	10.50	2409.37	258.74	0.42
Step 2	12064.04	1%	Temp	17900.00	137.69	158.924	154.55 154.55	160.28	0.002174	10.50 10.50	2409.37	258.74 258.74	0.42
Step 2 Step 2	12064.04 12064.04	1%	Prop	17900.00 17900.00	137.69 137.69	158.924 158.924	154.55 154.55	160.28 160.28	0.002174 0.002174	10.50	2409.37 2409.37	258.74 258.74	0.42 0.42
Stop 2	12004.04	1 70	1 10p	17300.00	137.09	150.824	134.35	100.20	0.002174	10.50	2408.37	230.14	0.42
Step 2	12020			Bridge									
Step 2	11998.71	1%	FEMA	17900.00	137.69	155.705	154.59	159.03	0.005855	15.33	1527.56	238.56	0.68
Step 2	11998.71	1%	Temp	17900.00	137.69	155.705	154.59	159.03	0.005855	15.33	1527.56	238.56	0.68
Step 2	11998.71	1%	Exist	17900.00	137.69	155.705	154.59	159.03	0.005855	15.33	1527.56	238.56	0.68
Step 2	11998.71	1%	Prop	17900.00	137.69	155.705	154.59	159.03	0.005855	15.33	1527.56	238.56	0.68
Step 2	11716.53	1%	FEMA	17900.00	135.69	155.674		156.95	0.002615	10.28	2508.52	325.29	0.44
Step 2	11716.53	1%	Temp	17900.00	135.69	155.674		156.95	0.002615	10.28	2508.52	325.29	0.44
Step 2	11716.53	1%	Exist	17900.00	135.69	155.674		156.95		10.28	2508.52	325.29	0.44
Step 2	11716.53	1%	Prop	17900.00	135.69	155.674		156.95	0.002615	10.28	2508.52	325.29	0.44
Step 2	11482.87	1%	FEMA	17900.00	135.54	155.539	150.99	156.31	0.001737	8.38	3190.51	389.21	0.37
Step 2	11482.87	1%	Temp	17900.00	135.54	155.539	150.99	156.31	0.001737	8.38	3190.51	389.21	0.37
Step 2	11482.87	1%	Exist	17900.00	135.54	155.539	150.99	156.31	0.001737	8.38	3190.51	389.21	0.37
Step 2	11482.87	1%	Prop	17900.00	135.54	155.539	150.99	156.31	0.001737	8.38	3190.51	389.21	0.37

18 19 19 19 19 19 19 19					ile: 1% (Continu		W.C. Flav	Cait M/ C	F.C. Flave	F.C. Clans	Val Chal	Flow Area	Ton Midth	Francis # Chi
1992 1992	Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl (ft/s)	Flow Area	Top Width	Froude # Chl
1	Step 2	11207.63	1%	FEMA				(11)						0.27
1992 1978 19														
1992 1992 1993 1994 1995														
March Marc														
Deg 10783-66 176				1										
Sept 1978-56 19.	Step 2	10753.45	1%	FEMA	17900.00	134.15	153.265		155.07	0.003561	11.56	2346.32	275.01	0.53
1982 1983 18	Step 2	10753.45	1%	Temp	17900.00	134.15	153.265		155.07	0.003561	11.56	2346.32	275.01	0.53
Section Color Co	Step 2	10753.45	1%	Exist	17900.00	134.15	153.265		155.07	0.003561	11.56	2346.32	275.01	0.53
Sept 2 1990-80 75	Step 2	10753.45	1%	Prop	17900.00	134.15	153.265		155.07	0.003561	11.56	2346.32	275.01	0.53
Sept 2 1990-80 75														
Supple Company Compa														
Sep 2														
Sep 2	Step 2	10390.88	1%	Prop	17900.00	133.27	151.989		153.58	0.004533	10.68	2104.25	203.69	0.49
Sep 2	0. 0	10110 11	401		47000 00	100 50	151510		450.50		40.00	0500.05		
Sep 2														
Sep 2														
Sep 2														
Sep 2 9803-8498 196	Step 2	10119.41	170	ГГОР	17900.00	132.30	131.340		152.50	0.002336	10.03	3306.03	414.02	0.43
Sep 2 9803-8498 196	Step 2	9603 496	1%	FEMA	17900 00	130.88	150 229		151 47	0.001851	9.61	2776 63	241 74	0.40
Sep 2 980.0480 196														
Seg 2 983.969 16														
802 2 0154.891 1% FEMA 17700.00 128.81 140.898 1 150.72 0.001345 8.81 2283.85 2283.5 0.34 Sing 2 0154.891 1% FEMA 17700.00 128.61 140.698 1 150.72 0.001345 8.81 2283.5 0.34 Sing 2 0154.891 1% FEMA 17700.00 128.61 140.698 1 150.72 0.001345 8.81 2283.5 0.34 Sing 2 0154.891 1% FEMA 17700.00 128.61 140.698 1 150.72 0.001345 8.81 2283.5 0.34 Sing 2 0154.891 1% FEMA 17700.00 128.61 140.698 150.72 0.001345 8.81 2283.5 0.34 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.698 150.72 0.001345 8.81 12701.00 1272.6 0.34 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.894 140.89 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.894 140.89 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.894 140.89 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.894 140.896 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.894 140.896 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.894 140.896 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.892 140.894 140.896 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.892 140.894 140.896 150.25 0.001787 10.11 2791.65 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.892 140.892 140.894 140.894 180.80 150.25 0.001787 10.11 2791.60 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.692 140.692 140.694 140.894 140.894 180.80 150.25 0.001787 10.11 12.291.60 227.26 0.40 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.692 140.692 140.691 140.71 0.00643 18.69 18.197 140.70 22.40 0.60 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.692 140.692 140.692 140.691 160.80 150.76 22.40 0.60 Sing 2 0154.891 1% FEMA 17700.00 128.60 140.692														
Sep 2				1										
Sep 2	Step 2	9154.891	1%	FEMA	17900.00	128.61	149.698		150.72	0.001345	8.61	2969.63	229.95	0.34
Sup 2														
Sing 2														
Sep 2	Step 2	9154.891	1%		17900.00	128.61	149.698		150.72	0.001345	8.61	2969.63	229.95	0.34
Sep 2														·
Sep 2														
Sep 2 Sep 3 Sep 4 Sep 5 Sep	Step 2	8903.543					148.934	140.88						
Sep 2														
Sep 2	Step 2	8903.543	1%	Prop	17900.00	128.89	148.934	140.88	150.25	0.001787	10.11	2791.65	237.26	0.40
Sep 2														
Sap 2 807.032 1% Emp 1700.00 128.99 142.622 142.62 1447.71 0.000943 16.98 1527.62 254.08 0.82 Sap 2 807.032 1% Exist 1700.00 128.99 142.622 142.62 1467.71 0.000943 16.98 1527.62 254.08 0.82 Sap 2 807.032 1% Exist 1700.00 172.86 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Emp 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Prop 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 8247.414 1% FEMA 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.814 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.814 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 135.99 0.00478 141.17 0.007143 14.	Step 2	8851			Bridge									
Sap 2 807.032 1% Emp 1700.00 128.99 142.622 142.62 1447.71 0.000943 16.98 1527.62 254.08 0.82 Sap 2 807.032 1% Exist 1700.00 128.99 142.622 142.62 1467.71 0.000943 16.98 1527.62 254.08 0.82 Sap 2 807.032 1% Exist 1700.00 172.86 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Emp 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Exist 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 804.402 1% Prop 1700.00 127.68 140.43 140.02 144.52 0.00887 15.97 1427.35 183.09 0.81 Sap 2 8247.414 1% FEMA 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.414 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.814 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 8247.814 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sap 2 7758.166 1% Fem 1700.00 124.11 138.190 135.99 0.00478 141.17 0.007143 14.	0: 0		401	==	47000 00	100.00					40.00	4507.00	05100	0.00
Sup 2 8807.032 1% Exist 1790.00 128.99 142.622 142.62 140.71 0.009843 16.98 1527.62 254.08 0.82 Sup 2 8864.4302 1% FEMA 1790.00 127.88 140.943 140.02 144.52 0.008867 15.97 1427.35 183.09 0.81 Sup 2 8864.4302 1% Exist 1790.00 127.88 140.943 140.02 144.52 0.008867 15.97 1427.35 183.09 0.81 Sup 2 8864.4302 1% Exist 1790.00 127.88 140.943 140.02 144.52 0.008867 15.97 1427.35 183.09 0.81 Sup 2 8864.4302 1% Exist 1790.00 127.88 140.943 140.02 144.52 0.008867 15.97 1427.35 183.09 0.81 Sup 2 8864.4402 1% Exist 1790.00 127.88 140.943 140.02 144.52 0.008867 15.97 1427.35 183.09 0.81 Sup 2 8247.444 1% FEMA 1790.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sup 2 8247.444 1% Exist 1790.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sup 2 8247.444 1% Exist 1790.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sup 2 8247.444 1% FEMA 1790.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sup 2 8247.644 1% FEMA 1790.00 124.11 138.190 136.79 141.17 0.007143 14.22 1605.33 255.35 0.72 Sup 2 7758.166 1% FEMA 1790.00 121.69 135.965 136.05 0.004866 12.02 1888.27 240.10 0.60 Sup 2 7758.166 1% FEMA 1790.00 121.69 135.965 136.05 0.004866 12.02 1888.27 240.10 0.60 Sup 2 7758.166 1% FEMA 1790.00 121.69 135.965 136.05 0.004866 12.02 1888.27 240.10 0.60 Sup 2 7758.166 1% FEMA 1790.00 120.64 134.035 135.05 0.004761 12.44 1835.86 219.59 0.59 Sup 2 7829.719 1% FEMA 1790.00 120.64 134.035 135.05 0.004761 12.44 1835.86 219.59 0.59 Sup 2 8829.19 1% FEMA 1790.00 120.64 134.035 135.05 0.004761 12.44 1835.86 219.59 0.59 Sup 2 8829.11 1% FEMA 1790		_												
Sup 2														
Simp 2		_		_										
Simp 2 8044-402 1% Temp 17900.00 127.86 140.843 1440.02 144.52 0.008967 15.97 1427.35 183.06 0.81	Step 2	0007.032	170	Prop	17900.00	120.99	142.022	142.02	146.71	0.006943	10.90	1527.62	254.06	0.82
Simp 2 8044-402 1% Temp 17900.00 127.86 140.843 1440.02 144.52 0.008967 15.97 1427.35 183.06 0.81	Stop 2	8644 402	10/	EEMA	17900.00	127.86	1/0.8/13	140.02	144 52	0.008867	15.07	1/27 35	183.00	0.81
Simp 2														
Sep 2 8644-402 1% Prop														
Sep 2 8247.414 1% FEMA 17900.00 124.11 138.190 136.79 141.17 0.007143 14.22 1606.33 255.35 0.72		_												
Sup 2 8247.414 1% East 17900.00 124.11 138.190 136.79 141.17 0.007143 14.22 1695.33 255.35 0.72				1 '										
Sup 2 8247.414 1% East 17900.00 124.11 138.190 136.79 141.17 0.007143 14.22 1695.33 255.35 0.72	Step 2	8247.414	1%	FEMA	17900.00	124.11	138.190	136.79	141.17	0.007143	14.22	1605.33	255.35	0.72
Simp 2 3247.414 1% Exist 1790.00 124.11 138.190 136.79 141.77 0.007143 14.22 1605.33 255.35 0.72		_												
Step 2 7758.166 1% FEMA 1790.00 121.69 135.965 138.05 0.004866 12.02 1888.27 240.10 0.60		8247.414			17900.00	124.11	138.190	136.79	141.17	0.007143	14.22	1605.33	255.35	0.72
Sep 2 7758.166 1%	Step 2	8247.414	1%	Prop	17900.00	124.11	138.190	136.79	141.17	0.007143	14.22	1605.33	255.35	0.72
Sep 2 7758.166 1%														
Step 2 7758.166 1% Exist 1790.00 121.69 135.965 138.05 0.004866 12.02 1888.27 240.10 0.60	Step 2	7758.166		FEMA	17900.00	121.69	135.965		138.05	0.004866	12.02	1888.27	240.10	
Step 2 7758.166 19% Prop 17900.00 121.69 135.965 138.05 0.004866 12.02 1888.27 240.10 0.60	Step 2	7758.166												
Step 2 7329.719 1% FEMA 17900.00 120.64 134.035 135.93 0.004781 11.24 1835.86 219.59 0.59														
Step 2 7329.719 1% Temp	Step 2	7758.166	1%	Prop	17900.00	121.69	135.965		138.05	0.004866	12.02	1888.27	240.10	0.60
Step 2 7329.719 1% Temp	0: 0	7000 710	401	==	47000 00	100.01	10100		105.00			100=00	040.50	0.50
Step 2		_												
Step 2														
Step 2		_		_										
Step 2 6887.939 1% Exist 17900.00 117.11 132.923 134.23 0.002710 9.29 2157.35 213.60 0.45	Siep Z	1323.118	1 70	Тор	17 900.00	120.04	134.035		130.83	0.004781	11.24	1033.00	218.38	0.59
Step 2 6887.939 1% Exist 17900.00 117.11 132.923 134.23 0.002710 9.29 2157.35 213.60 0.45	Step 2	6897 939	1%	FEMA	17900 00	117 11	132 923		134 23	0.002710	0 20	2157 35	213 60	0.45
Step 2 6897.939 1% Exist 17900.00 117.11 132.923 134.23 0.002710 9.29 2157.35 213.60 0.45 Step 2 6897.939 1% Prop 17900.00 117.11 132.923 134.23 0.002710 9.29 2157.35 213.60 0.45 Step 2 6332.211 1% FEMA 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Temp 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Exist 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% FEMA 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 5992.891 <		_												
Step 2 6897.939 1% Prop 17900.00 117.11 132.923 134.23 0.002710 9.29 2157.35 213.60 0.45 Step 2 6332.211 1% FEMA 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Emp 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Exist 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Prop 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 5992.891 1% FEMA 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Step 2 6332.211 1% FEMA 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Temp 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Exist 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Prop 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 <		_												0.45
Step 2 6332.211 1% Temp 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Exist 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Temp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Temp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 <						-								
Step 2 6332.211 1% Temp 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Exist 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Temp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Temp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 <	Step 2	6332.211	1%	FEMA	17900.00	115.19	132.302		133.07	0.001240	7.31	2807.55	234.53	0.32
Step 2 6332.211 1% Exist 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 6332.211 1% Prop 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32 Step 2 5992.891 1% FEMA 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Femp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 <		_												0.32
Step 2 6332.211 1% Prop 17900.00 115.19 132.302 133.07 0.001240 7.31 2807.55 234.53 0.32					17900.00									0.32
Step 2 5992.891 1% Temp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 1% FEMA 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Temp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458		6332.211	1%	Prop	17900.00	115.19	132.302		133.07	0.001240	7.31	2807.55	234.53	0.32
Step 2 5992.891 1% Temp 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 1% FEMA 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Temp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458														
Step 2 5992.891 1% Exist 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5992.891 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 1% FEMA 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Temp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5165.408	Step 2	_		FEMA		114.37								0.45
Step 2 5992.891 1% Prop 17900.00 114.37 131.299 132.43 0.002748 9.42 2444.98 278.33 0.45 Step 2 5581.458 1% FEMA 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Femp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2														0.45
Step 2 5581.458 1% FEMA 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Temp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 112.91 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5165.408 1% FEMA 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2		_												0.45
Step 2 5581.458 1% Temp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 <td>Step 2</td> <td>5992.891</td> <td>1%</td> <td>Prop</td> <td>17900.00</td> <td>114.37</td> <td>131.299</td> <td></td> <td>132.43</td> <td>0.002748</td> <td>9.42</td> <td>2444.98</td> <td>278.33</td> <td>0.45</td>	Step 2	5992.891	1%	Prop	17900.00	114.37	131.299		132.43	0.002748	9.42	2444.98	278.33	0.45
Step 2 5581.458 1% Temp 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 <td>_</td> <td></td>	_													
Step 2 5581.458 1% Exist 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5581.458 1% Prop 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5165.408 1% FEMA 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 <td></td> <td>_</td> <td></td>		_												
Step 2 5581.458 1% Prop 17900.00 113.35 129.133 130.98 0.004107 11.56 1891.11 229.18 0.55 Step 2 5165.408 1% FEMA 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14 298.34														
Step 2 5165.408 1% FEMA 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14		_												
Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14 298.34 0.43	Step 2	5581.458	1%	Prop	1/900.00	113.35	129.133		130.98	U.UU4107	11.56	1891.11	229.18	0.55
Step 2 5165.408 1% Temp 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14 298.34 0.43	Stop 2	5165 400	10/	EEMA	17000.00	110.00	125 020	125.4.4	120.70	0.000000	12.00	1575.01	252.24	0.70
Step 2 5165.408 1% Exist 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14 298.34 0.43		_												
Step 2 5165.408 1% Prop 17900.00 112.09 125.932 125.14 128.70 0.006996 13.98 1575.21 253.34 0.70 Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14 298.34 0.43														
Step 2 4739.718 1% FEMA 17900.00 111.29 125.310 126.54 0.002588 9.01 2179.14 298.34 0.43		_		_										
	5.0p Z	3.30.400	1.73	1op	17330.00	112.03	120.302	120.14	120.70	3.000330	13.30	1070.21	200.04	0.70
	Step 2	4739.718	1%	FEMA	17900.00	111.29	125.310		126.54	0.002588	9.01	2179.14	298.34	0.43
		_												

HEC-RAS River: Winters Run Reach: Step 2 Profile: 1% (Continued)

		Run Reach:		e: 1% (Continu		W.C. Flan	C=i+ M/ C	F.C. Flave	F.C. Clans	Val Chal	Ган Ала	Ton Middle	Frauda # Chl
Reach	River Sta	Profile	Plan	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
Step 2	4739.718	1%	Exist	17900.00	111.29	125.310	(11)	126.54	0.002588	9.01	2179.14	298.34	0.43
Step 2	4739.718	1%	Prop	17900.00	111.29	125.310		126.54	0.002588	9.01	2179.14	298.34	0.43
Step 2	4739.710	1 70	гюр	17900.00	111.29	123.310		120.04	0.002366	9.01	2179.14	290.34	0.43
Step 2	3937.103	1%	FEMA	17900.00	109.28	123.982		124.58	0.001906	7.41	4180.24	1026.07	0.37
Step 2	3937.103	1%	Temp	17900.00	109.28	123.982		124.58	0.001906	7.41	4180.24	1026.07	0.37
Step 2	3937.103	1%	Exist	17900.00	109.28	123.982		124.58	0.001906	7.41	4180.24	1026.07	0.37
Step 2	3937.103	1%	Prop	17900.00	109.28	123.982		124.58	0.001906	7.41	4180.24	1026.07	0.37
			·										
Step 2	3497.456	1%	FEMA	17900.00	106.84	121.132	117.45	123.19	0.004919	11.63	1743.88	412.03	0.59
Step 2	3497.456	1%	Temp	17900.00	106.84	121.132	117.45	123.19	0.004919	11.63	1743.88	412.03	0.59
Step 2	3497.456	1%	Exist	17900.00	106.84	121.132	117.45	123.19	0.004919	11.63	1743.88	412.03	0.59
Step 2	3497.456	1%	Prop	17900.00	106.84	121.132	117.45	123.19	0.004919	11.63	1743.88	412.03	0.59
Step 2	2714.094	1%	FEMA	17900.00	105.34	121.684		121.88	0.000360	3.57	5216.33	477.15	0.17
Step 2	2714.094	1%	Temp	17900.00	105.34	121.684		121.88	0.000360	3.57	5216.33	477.15	
Step 2	2714.094	1%	Exist	17900.00	105.34	121.684		121.88	0.000360	3.57	5216.33	477.15	0.17
Step 2	2714.094	1%	Prop	17900.00	105.34	121.684		121.88	0.000360	3.57	5216.33	477.15	0.17
Step 2	2382.713	1%	FEMA	17900.00	104.52	121.578		121.76	0.000334	3.44	5203.38	384.95	0.16
Step 2	2382.713	1%	Temp	17900.00	104.52	121.578		121.76	0.000334	3.44	5203.38	384.95	0.16
Step 2	2382.713	1%	Exist	17900.00	104.52	121.578		121.76	0.000334	3.44	5203.38	384.95	0.16
Step 2	2382.713	1%	Prop	17900.00	104.52	121.578		121.76	0.000334	3.44	5203.38	384.95	0.16
0: 0	0010100	401		47000 00	100.01	101 117		101.01				005.00	0.40
Step 2	2012.109	1%	FEMA	17900.00	103.61 103.61	121.447		121.64 121.64	0.000306 0.000306	3.55 3.55	5055.62	335.38	0.16 0.16
Step 2	2012.109	1%	Temp	17900.00	103.61	121.447		121.64	0.000306	3.55	5055.62 5055.62	335.38 335.38	
Step 2 Step 2	2012.109	1%	Prop	17900.00 17900.00	103.61	121.447 121.447		121.64	0.000306	3.55	5055.62	335.38	0.16 0.16
Step 2	2012.109	170	Рюр	17900.00	103.61	121.447		121.04	0.000306	3.55	5055.62	335.36	0.16
Step 2	1755.161	1%	FEMA	17900.00	102.99	121.363		121.57	0.000283	3.62	4959.17	287.58	0.15
Step 2	1755.161	1%	Temp	17900.00	102.99	121.363		121.57	0.000283	3.62	4959.17	287.58	0.15
Step 2	1755.161	1%	Exist	17900.00	102.99	121.363		121.57	0.000283	3.62	4959.17	287.58	0.15
Step 2	1755.161	1%	Prop	17900.00	102.99	121.363		121.57	0.000283	3.62	4959.17	287.58	0.15
Step 2	1451.106	1%	FEMA	17900.00	102.24	121.334		121.48	0.000203	3.03	6022.16	407.28	0.13
Step 2	1451.106	1%	Temp	17900.00	102.24	121.334		121.48	0.000203	3.03	6022.16	407.28	0.13
Step 2	1451.106	1%	Exist	17900.00	102.24	121.334		121.48	0.000203	3.03	6022.16	407.28	0.13
Step 2	1451.106	1%	Prop	17900.00	102.24	121.334		121.48	0.000203	3.03	6022.16	407.28	0.13
Step 2	1099.64	1%	FEMA	17900.00	101.38	121.282		121.41	0.000159	2.84	6340.64	364.40	0.12
Step 2	1099.64	1%	Temp	17900.00	101.38	121.282		121.41	0.000159	2.84	6340.64	364.40	0.12
Step 2	1099.64	1%	Exist	17900.00	101.38	121.282		121.41	0.000159	2.84	6340.64	364.40	0.12
Step 2	1099.64	1%	Prop	17900.00	101.38	121.282		121.41	0.000159	2.84	6340.64	364.40	0.12
Step 2	841.9819	1%	FEMA	17900.00	100.75	121.256		121.37	0.000129	2.68	6781.39	386.41	0.11
Step 2	841.9819	1%	Temp	17900.00	100.75	121.256		121.37	0.000129	2.68	6781.39	386.41	0.11
Step 2	841.9819	1%	Exist	17900.00	100.75	121.256		121.37	0.000129	2.68	6781.39	386.41	0.11
Step 2	841.9819	1%	Prop	17900.00	100.75	121.256		121.37	0.000129	2.68	6781.39	386.41	0.11
0: 6	= 10 1 · · · ·	101		4=									_
Step 2	513.1667	1%	FEMA	17900.00	99.94	121.227		121.32	0.000107	2.50	7175.78	353.42	0.10
Step 2	513.1667	1%	Temp	17900.00 17900.00	99.94 99.94	121.227 121.227		121.32	0.000107 0.000107	2.50 2.50	7175.78 7175.78	353.42 353.42	0.10 0.10
Step 2	513.1667	1%	Exist					121.32	0.000107				0.10
Step 2	513.1667	1%	Prop	17900.00	99.94	121.227		121.32	0.000107	2.50	7175.78	353.42	0.10
Stop 2	290.7667	1%	FEMA	17900.00	99.40	121.204		121.30	0.000107	2.49	7204.08	343.01	0.09
Step 2 Step 2	290.7667	1%	Temp	17900.00	99.40	121.204		121.30	0.000107	2.49	7204.08	343.01	0.09
Step 2	290.7667	1%	Exist	17900.00	99.40	121.204		121.30	0.000107	2.49	7204.08	343.01	0.09
Step 2	290.7667	1%	Prop	17900.00	99.40	121.204		121.30	0.000107	2.49	7204.08	343.01	0.09
Stop 2	200.7007	. 70	. 10p	17300.00	33.40	121.204		121.30	0.000107	2.49	7 204.00	340.01	0.09
Step 2	2.010118	1%	FEMA	17900.00	98.69	121.190	103.10	121.27	0.000079	2.24	8024.32	374.44	0.08
Step 2	2.010118	1%	Temp	17900.00	98.69	121.190	103.10	121.27	0.000079	2.24	8024.32	374.44	0.08
Step 2	2.010118	1%	Exist	17900.00	98.69	121.190	103.10	121.27	0.000079	2.24	8024.32	374.44	0.08
Step 2	2.010118	1%	Prop	17900.00	98.69	121.190	103.10	121.27	0.000079	2.24	8024.32	374.44	0.08
		1.,0	j U P		55.05	.2100	.00.10		0.000010	2.27	002 7.02	J	5.00

Chapter 3

- 3.1 Wetlands & Waterways Identification & Delineation Report
- 3.2 Stream Assessment Report
- 3.3 Threatened & Endangered Species Coordination
 - 3.3.1 Maryland DNR Coordination
 - 3.3.2 USFWS Coordination
 - 3.3.3 Phase I Bog Turtle Habitat Survey Report
- 3.4 Maryland Historic Trust Coordination

3.1

Wetlands & Waterways Identification & Delineation Report

WETLAND IDENTIFICATION AND DELINEATION REPORT

Bel Air Impoundment Project Bel Air, Harford County, Maryland

Prepared for:
Maryland American Water Company

Prepared by:

November 2015

WETLAND IDENTIFICATION AND DELINEATION REPORT

Bel Air Impoundment Project

Bel Air, Harford County, Maryland

Prepared for:

Maryland American Water Company

Prepared by:

November 2015

TABLE OF CONTENTS

1.0	Project Description	1
2.0	Purpose	1
3.0	Study Area Description	1
	3.1 Topography	2
	3.2 Soils	2
	3.3 Geology	2
	3.4 Surface Waters	3
	3.5 National Wetlands Inventory	3
	3.6 Project Environmental Review	3
4.0	Methods	8
5.0	Results	9
	5.1 Wetlands	10
	5.2 Waterways	11
6.0	Summary	13
7.0	References	14
8.0	List of Contributors	16
	FIGURES	
Figure	FIGURES 1 Project Location and Study Area Map	1
	2 USGS Topographic Map	
Ū	e 3 Soil Survey Map	
_	4 National Wetland Inventory Map	
Tiguic	7 - I vational Wedana inventory Map	. ,
	TABLES	
	1 Mapped Soils of the Project Study Area	
Table	2 Dominant Vegetation	9
	APPENDICES	
APPE	NDIX A – WETLANDS AND WATERWAYS MAPPING	
APPE	NDIX B – SITE PHOTOGRAPHS	
APPE	NDIX C – WETLAND FIELD DATA FORMS AND FUNCTION & VALUE FORMS	
APPE	NDIX D – PROJECT ENVIRONMENTAL REVIEW LETTERS	

1.0 Project Description

Maryland American Water Company (MAWC) is proposing to construct an off-stream raw water storage reservoir to serve the Town of Bel Air. The proposed project requires a raw water intake structure on Winters Run and associated pipeline crossings on Winters Run to connect the existing Winters Run Water Treatment Plant (WTP). Construction for this project is proposed in an upland field currently used as agricultural land. The connecting infrastructure between the impoundment and the plant will need to cross Winters Run and its floodplain.

The existing Bel Air water system is supplied primarily from the existing Winters Run Water Treatment Plant (2.0 MGD nominal capacity) that treats water from Winters Run. The Winters Run withdrawal is permitted by the Maryland Department of the Environment (MDE) at 1.4 MGD, annual average. The MAWC water system is also supplemented by water supply wells. Finally, MACW has an agreement with Harford County for a 0.5 MGD supply through an existing metered interconnection.

When stream flow drops below the minimum pass-by flow stipulated by MDE, water cannot be withdrawn by the water treatment plant. During such times historically, the Harford County has allowed the MAWC system to take water in excess of the agreement amount to meet system demands. The County is now facing projected long-term supply shortfalls and has alerted MAWC that they can no longer commit to supplemental supply. As a result, the MAWC identified and evaluated a number of options for a supplemental supply.

In working with Harford County and MDE to evaluate supply alternatives, the County identified a County-owned parcel adjacent to Winters Run, upstream of the Winters Run Water Treatment Plant that could potentially be used for construction of an off-stream storage reservoir. The reservoir would be purchased by MAWC and used to supply the WTP when withdrawal from the stream is restricted or prohibited. The reservoir would be refilled from the stream when flows are sufficient to meet both the supply needs and the refill rates.

2.0 Purpose

The purpose of this report is to present the results of the wetlands and waterways investigation performed within the proposed project study area. This report was prepared in part to satisfy the regulatory requirements of the U.S. Army Corps of Engineers (USACE) under the purview of Section 404 of the Clean Water Act and the Maryland Department of the Environment (MDE) under Environment Article Title 5, Subtitle 5-901through 5-911; Annotated Code of Maryland; Code of Maryland Regulations (COMAR) 26.23.

3.0 Study Area Description

The project study area was approximately 82.18 acres in size and is an agricultural field located southwest of Winters Run between Route 1/Bel Air Bypass and Baltimore Pike. The project study area encompasses the existing water treatment plant and is bordered to the north-northeast by Winters Run, to the south by an unnamed tributary (UNT) to Winters Run, to the southeast by current construction of an apartment building complex and its access road, and to the northwest by Route 1/Bel Air Bypass. The stream features are bordered by emergent wetlands and beech-maple forests.

3.1 Topography

According to the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps (Bel Air and Jarrettsville, MD), the elevation of the project site is approximately between 180 and 320 feet above mean sea level (amsl). The project study area's highest elevation is approximately 320 feet amsl in the southwest corner of the agricultural field. The project study area's lowest elevation is approximately 180 feet amsl at Winters Run. A Project Location and Study Area Map is provided as **Figure 1**. An excerpt from the USGS Topographic Quadrangle Maps is provided as **Figure 2**.

3.2 Soils

According to the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) Soil Survey for Harford County, the soil series within the project study area includes the following listed below in Table 1. An excerpt from the soil survey is provided below as **Figure 3.**

Map Unit Symbol **Map Unit Name** Alluvial land Av Cu Codorus silt loam Delanco silt loam, 3 to 8 percent slopes DcB GcC2 Glenelg loam, 8 to 15 percent slopes, moderately eroded EsC2 Elsinboro loam, 5 to 10 percent slopes, moderately eroded Hatboro silt loam Hb LeB2 Legore silt loam, 3 to 8 percent slopes, moderately eroded Legore silt loam, 8 to 15 percent slopes, moderately eroded LeC2 LeD2 Legore silt loam, 15 to 25 percent slopes, moderately eroded LgC3 Legore silty clay loam, 8 to 15 percent slopes, severely eroded Legore silty clay loam 15 to 25 percent slopes, severely eroded LgD3 Legore very stony silt loam, 25 to 45 percent slopes LfE MdE Manor very stony loam, 25 to 45 percent slopes Manor and Glenelg very stony loams, 3 to 15 percent slopes MgC Manor and Glenelg very stony loams, 15 to 25 percent slopes MgD MfE Manor soils, 25 to 45 percent slopes MsC2 Montalto silt loam, 8 to 15 percent slopes, moderately eroded NeB2 Neshaminy silt loam, 3 to 8 percent slopes, moderately eroded Neshaminy silt loam, 8 to 15 percent slopes, moderately eroded NeC2

Table 1 Mapped Soils of the Project Study Area

According to the USDA NRCS Web Soil Survey (October 2015), the following soils are listed as soils with a hydric rating for Harford County, Maryland: Av-Alluvial land, Cu-Codorus silt loam, and Hb-Hatboro silt loam.

3.3 Geology

The proposed project is located in the Piedmont Plateau Province of Maryland (MGS, 2000). According to the Maryland Geological Survey, the site is underlain with hypersthene gabbro with

subordinate amounts of olivine gabbro, norite, anorthositic gabbro, and pyroxenite from the Early Paleozic to Late Precambrian Period (MGS, 1968).

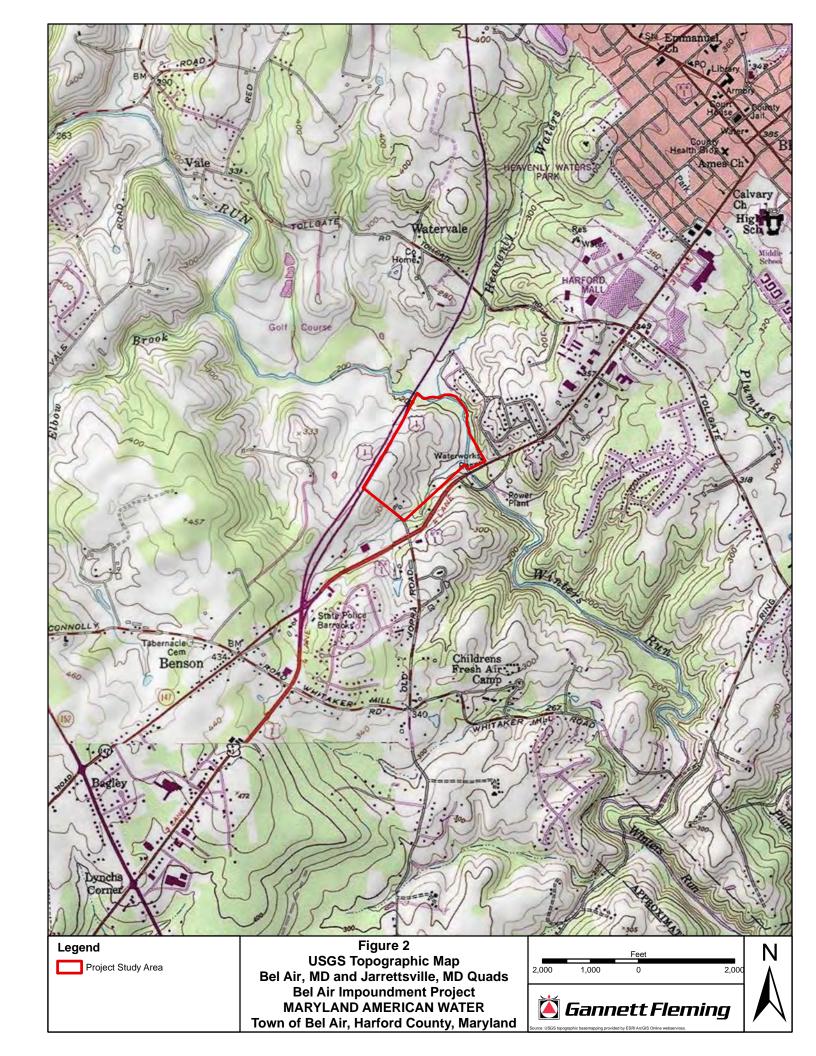
3.4 Surface Waters

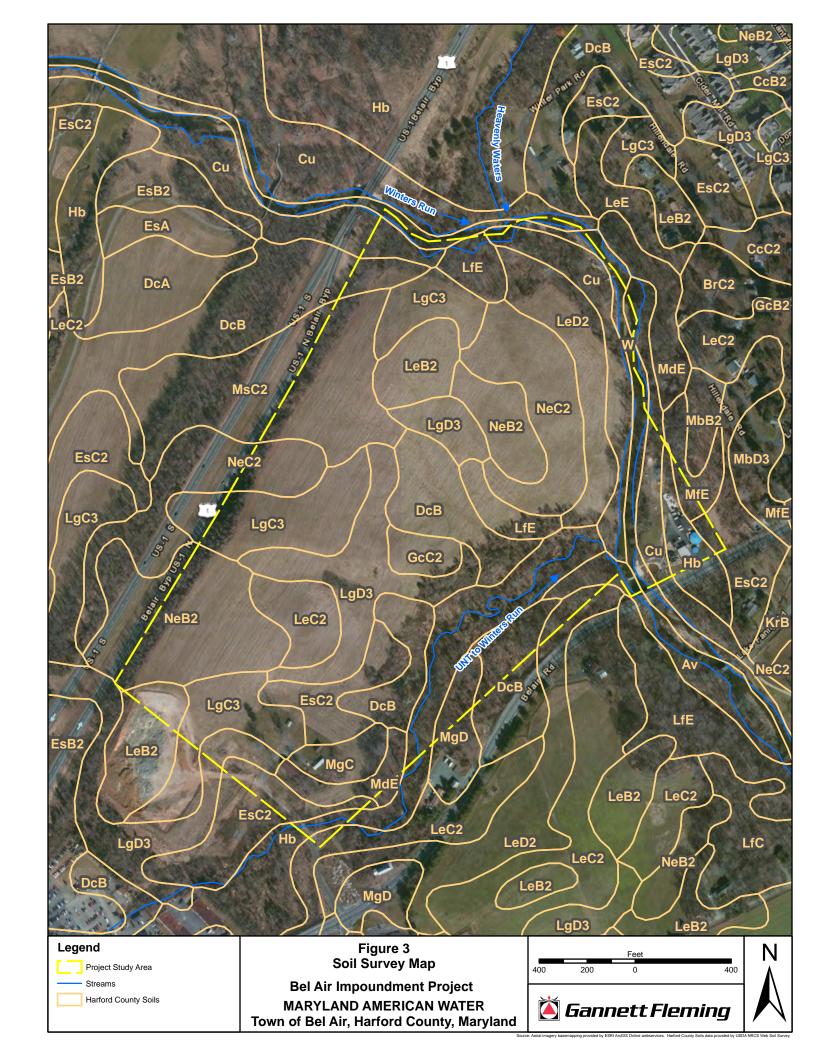
Winters Run and the UNT to Winters Run are both identified as perennial streams by the U.S. Geological Survey (USGS) (**Figure 2**). Four ephemeral, two intermittent, and one other perennial streams were also identified as water features within the project study area.

Maryland classifies surface water bodies according to use classes which describe the suite of specific designated uses or goals for that water body. The use classes assigned to Maryland's surface waters as promulgated in COMAR Section 26.08.02.08 lists Winters Run and its unnamed tributary as Recreational Trout Waters and Public Water Supply (IV-P). The Maryland Department of Natural Resources (MDNR) does not stock Winters Run or its unnamed tributary, nor does it list these streams as a wild trout waters.

3.5 National Wetlands Inventory

The National Wetlands Inventory (NWI) online mapping tool identified Winters Run as a riverine, lower perennial, unconsolidated bottom, permanently flooded (R2UBH) feature. No other NWI features were mapped the project study area. The NWI map for the site is provided as **Figure 4**.


3.6 Project Environmental Review


The project study area was submitted for environmental review to the MDNR Wildlife and Heritage Service and the USFWS Chesapeake Bay Field Office (CBFO) on August 27, 2014 to identify potential species of concern within the project study area, and aid in initiating jurisdictional agency coordination to avoid potential environmental impacts.

No records of rare, threatened or endangered species were identified within the study area boundaries by USFWS CBFO or MDNR Wildlife and Heritage Service. No further coordination is required with either agency unless project plans change or additional information on the distribution of listed or proposed species becomes available.

One wetland delineated within the project study area was determined to have potential bog turtle (*Glyptemys muhlenbergii*) habitat through a Phase I Bog Turtle Habitat survey performed by a Recognized, Qualified Bog Turtle Surveyor. Therefore, further coordination with the MDNR and USFWS may be required if impacts to this wetland is proposed. The project environmental review letters and responses are provided as **Appendix D.**

4.0 Methods

The 82.18-acre study area was investigated for palustrine wetland indicators of vegetative composition, soil development, and hydrology. The investigation was conducted in accordance with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0* (U.S. Army Corps of Engineers, 2012). Wetland field data forms were completed to document wetland or non-wetland data points. If present, wetlands within and directly adjacent to the study area were delineated so that their presence could be shown on project mapping to aid in impact avoidance and/or minimization during engineering design.

Soils were characterized by evaluating the upper horizons of the soil profile. Soil pits were dug using a "sharpshooter" spade with a 14-inch blade. Soil horizons were evaluated using normal field protocols for determining texture and nomenclature. The *Munsell Soil Color Charts* (Kollmorgen Instruments Corporation, 1994) were used to determine the colors of horizons and redoximorphic features. Soil observations of reducing conditions were determined in the field using presence/absence determinations of redoximorphic concretions and oxidized rhizospheres, and identifying low chroma matrices.

Vegetation was identified using *A Field Guide to Trees and Shrubs* (Petrides, 1986), *Newcomb's Wildflower Guide* (Newcomb 1977), and *Grasses: An Identification Guide* (Brown, 1979). Plant species were assigned an indicator status [i.e., Upland (UPL), Facultative Upland (FACU), Facultative (FAC), Facultative Wetland (FACW), or Obligate Wetland (OBL)] based on the *National Wetland Plant List* (USACE, 2014) for the Eastern Mountain and Piedmont Region.

Data point locations were investigated for primary and secondary wetland hydrology indicators. If present, wetland boundaries were marked using pink wetland flagging marked with the wetland id (e.g. W1) and the flag number (e.g. 1, 2, 3, etc.). Wetland boundary data points were located using a Trimble GeoXH 6000 Global Positioning System (GPS). The Trimble GeoXH 6000 is capable of attaining sub-meter accuracy. The GPS data were then transferred onto relevant site mapping using the U.S. State Plane Maryland coordinate system. Wetlands and waterways were identified on site base mapping to show their proximity to the proposed construction area.

Classifications were assigned to each wetland following the Cowardin et al methods (1979). Color photographs were taken of all relevant features to document site conditions during the time of the investigations.

Wetland function and value assessments were performed at each wetland location (if present) using the methods outlined in *The Highway Methodology Workbook Supplement, Wetland Functions and Values A Descriptive Approach*, USACE New England District (NEDEP-360-1-30a 1995). Wetland functions were evaluated and recorded using the standard wetland function-value evaluation form. Classifications were assigned to each wetland following the Cowardin et al methods (1979). Color photographs were taken of all relevant features to document site conditions during the time of the investigations.

Waterways were identified through a review of available mapping and field investigations. Topographic and engineering maps were reviewed for the presence of streams within the project study area. Field investigations for waterways were performed in conjunction with the wetland field investigation and included the field verification of mapped watercourses and the identification and delineation of streams, springs, and seeps that were not shown on existing engineering plans. Waterways were identified by the presence of bed and banks and/or ordinary high water marks. The flow regime of each identified waterway was characterized based upon field indicators of hydrologic, floral, and faunal character at the time of the investigation. Waterways with banks less than 10 feet wide had centerlines delineated using pink wetland flagging marked with the stream id (e.g. S1) and the flag number (e.g. 1, 2, 3, etc.). Waterways with top of bank widths greater than 10 feet had both banks delineated. All identified waterways were photographed and located using GPS.

5.0 Results

The study area was field investigated for palustrine wetland indicators of vegetative composition, soil development, and hydrologic characteristics on September 29-30, 2015. Weather conditions were warm with a high temperature of $79.6^{\circ}F$. Preliminary precipitation data indicated no rainfall for the region over two weeks prior to the investigation (Weather Underground, 2015), however 1.6 inches of rain fell between the afternoon of September 29 to the morning of September 30 during the investigation. The closest weather station to the site was located at N 39 ° 33 ' 14 ", W 76° 22 ' 39 ", approximately 2.6 miles north of the project site. The dominant land-use within the study area was agricultural, upland forest, and light industrial (water treatment plant). **Table 2** is a summary of dominant vegetation observed within the project study area.

Table 2 Dominant Vegetation				
Scientific Name	Common Name	Indicator Status		
Trees				
Acer rubrum	red maple	FAC		
Acer saccharum	sugar maple	FACU		
Catalpa speciosa	northern catalpa	FAC		
Fagus grandifolia	American beech	FACU		
Juglans nigra	black walnut	UPL		
Liriodendron tulipifera	tulip poplar	FACU		
Platanus occidentalis	American sycamore	FACW		
Prunus serotina	black cherry	FACU		
Shrubs				
Lindera benzoin	spicebush	FAC		
Rosa multiflora	multiflora rose	FACU		

Table 3 Dominant Vegetation				
Herbs				
Impatiens capensis	spotted touch-me-not	FACW		
Lactuca serriola	prickly lettuce	FAC		
Microstegium vimineum	Japanese stilt grass	FAC		
Persicaria sagittata	arrow-leaf tearthumb	OBL		
Phalaris arundinacea	reed canary grass	FACW		
Phytolacca americana	American pokeweed	FACU		
Solidago spp.	goldenrods	NA		
Typha latifolia	broad-leaf cattail	OBL		
Vines				
Lonicera japonica	Japanese honeysuckle	FAC		
Vitis sp.	grape	NA		

The USGS-mapped Winters Run (WR) and UNT to Winters Run (S8) were confirmed and delineated within the project study area. An additional perennial watercourse (S3), two intermittent (S4-S5) and four ephemeral (S1-S2, S6-S7) watercourses with defined bed and banks were identified and delineated within the project study area. Two palustrine wetlands were identified and delineated within the project study area: one palustrine emergent (W1, PEM) wetland along the north-northwest property and study area boundary behind the water treatment plant and one palustrine emergent (W2, PEM) wetland along the UNT to Winters Run along the southeast edge of the study area. See **Appendix A** for the location and boundaries of the following delineated features. See **Appendix B** for representative photographs of the project study area, including the wetlands and waterways. Wetland Determination Data Forms are provided in **Appendix C**.

5.1 Wetlands

Wetland 1 (W1)

Cowardin Classification: PEM

Area (acres): 0.161

Wetland 1 is a PEM wetland located along the north-northwest property and study area boundary behind the water treatment plant. The wetland receives hydrology as drainage from the surrounding upland forested slopes and is a toe-slope linear depression in the Winters Run floodplain. Dominant wetland vegetation within this wetland consisted of multiflora rose (*Rosa multiflora* – FACU) and Japanese stilt grass (*Microstegium vimineum* – FAC).

Primary hydrologic indicators within this wetland area consisted of water-stained leaves (B9) and oxidized rhizospheres (C3). Secondary hydrologic indicators included sparsely vegetated concave surface (B8), geomorphic position (D2), and microtopographic relief (D4).

A soil test pit was advanced to approximately 20 inches below the ground surface. The upper two inches of the soil profile displayed a 10YR 4/2 color in the matrix with 10% 7.5YR 4/6 redox concentrations and 5% 7.5YR 3/4 pore linings with a silty-sand texture. The depth between two

to 10 inches had a 10YR 5/2 color in the matrix with 20% 10YR 5/6 redox concentrations and 5% 10YR 4/6 pore linings with a sand texture. The remaining soil profile had a 10YR 5/1 matrix color with 15% 7.5YR 4/6 redox concentrations and 5% 7/5YR 4/4 pore linings with a silty-sand texture. The soil was indicative of wetland soils with low chroma colors and redox features.

Wetland 2 (W2)

Cowardin Classification: PEM

Area (acres): 1.872

Wetland 2 is a PEM wetland located downslope of an agricultural field and within the floodplain of the UNT to Winters Run. The wetland receives hydrology from a spring house and several springs located on the upslope edge of the wetland, as well as drainage from the surrounding agricultural field. Dominant vegetation within this wetland consisted of arrow-leaf tearthumb (*Perciscaria sagittata* – OBL), reed canary grass (*Phalaris arundinacea* – FACW), and broad-leaf cat-tail (*Typha latifolia* – OBL).

Primary hydrologic indicators within this wetland area consisted of a high water table (A2), saturation (A3), iron deposits (B5), hydrogen sulfide odor (C1), and oxidized rhizospheres (C3). Secondary hydrologic indicators included geomorphic position (D2) and microtopographic relief (D4).

A soil test pit was advanced to approximately 20 inches below the ground surface. The upper four inches of soil displayed a 10YR 4/1 matrix color with 3% 10YR 4/6 redox concentrations located in the pore linings of living roots. The depth of four to eight inches displayed a 10YR 5/2 matrix color with 5% 10YR 4/6 redox concentrations. The texture for the first 10 inches was a sandy-silt. The remaining 10 inches of the soil profile showed a 10YR 4/2 matrix color with 3% 10YR 4/4 redox concentrations with a silt loam texture. The soil was indicative of wetland soils with low chroma colors and redox features.

5.2 Waterways

Nine waterways were delineated within the project study area. Four ephemeral, two intermittent, and three perennial waterways boundaries were mapped and are presented in **Appendix A**. Photographs were taken of the streams and are provided in **Appendix B**.

Stream 1 (S1) is an ephemeral watercourse between Wetland 1 and Winters Run and was dry at the time of survey. Stream 1 had an approximate width, from bank to bank, ranging from 1 to 3 feet. Its substrate was composed of exposed soil, roots, fine woody debris, and leaf litter. The stream banks were approximately 1 foot high on either side.

Stream 2 (S2) is an ephemeral watercourse that drains overland flow from the agricultural field to Wetland 2. Stream 2 had a top of bank width of 1 foot and wetted width of less than 1 foot. The bank depth was approximately 1 foot on either bank and water depth was less than 1 inch. The substrate consisted of vegetation, cobble, roots, and exposed soil.

Stream 3 (S3) is a perennial watercourse that begins at a spring house adjacent to Wetland 2 and drains into the wetland where it loses channel definition, then re-channelizes near the UNT to

Winters Run (S8). Stream 3 had a top of bank width that ranged from 2 to five feet and wetted width of 1 to 3 feet. The bank height was less than 1 foot on either bank and water depth was approximately 2 inches. The substrate consisted of cobble, silts, leaf litter, and fine woody debris.

Stream 4 (S4) is an intermittent watercourse that drains Wetland 2 to the UNT to Winters Run (S8). Stream 4 had a top of bank width of 1 foot and wetted width of less than 1 foot. The bank height on either bank was less than 1 foot and water depth was less than 2 inches. The substrate consisted of silts, leaf litter, and fine woody debris.

Stream 5 (S5) is an intermittent watercourse that also drains Wetland 2 to the UNT to Winters Run (S8). Stream 5 had a top of bank width and wetted width of 2 feet. The bank height on either bank was 1 foot and water depth ranged from 2 to 6 inches. The substrate was composed of vegetation, silts, cobble, and fine roots.

Stream 6 (S6) is an ephemeral watercourse that drains overland flow from the agricultural field to the UNT to Winters Run. Stream 6 had a top of bank width of 1 foot and had no flow at the time of survey. The bank height was less than 1 foot on either bank. The substrate consisted of leaf litter and exposed soil.

Stream 7 (S7) is an ephemeral watercourse that drains overland flow from the agricultural field to the UNT to Winters Run. Stream 7 had a top of bank width ranging from 1 to 2 feet and was not flowing at the time of survey. The bank height was 1 foot on either bank. The substrate consisted of leaf litter and exposed soil.

Stream 8 (S8) is a USGS-mapped, unnamed perennial watercourse that flows into Winters Run. Stream 8 had top of bank and wetted widths ranging from 12 to 18 feet. The bank height ranged from 3 to 6 feet on either bank and water depths ranged from one to 24 inches. The substrate consisted of cobble, gravel, sands, silts, and some boulders.

Winters Run (WR) is a USGS-mapped, perennial watercourse that flows to the southeast across the northern project study area boundary. Winters Run had a top of bank width that ranged from 50 to 120 feet. The wetted width ranged from 50 to 120 feet. Banks were approximately 3 to 6 feet in height and water depths ranged from 18 to 36+inches. The substrate consisted of cobble, gravel, sands, silts, and some boulders.

6.0 Summary

Field investigations conducted by Gannett Fleming on September 29-30, 2015, identified and delineated wetlands and waterways in conjunction with the Bel Air Reservoir Project. Winters Run (WR) and its unnamed tributary (S8) were confirmed in the field. Additionally, one other perennial stream, two intermittent streams, and four ephemeral streams were identified and delineated within the project study area. Two palustrine emergent wetlands, were identified and delineated within the project study area.

- Wetland 1 (W1): PEM, 0.161 ac.
- Wetland 2 (W2): PEM, 1.872 ac.
- Stream 1 (S1): Ephemeral Waterway, 80 linear feet
- Stream 2 (S2): Ephemeral Waterway, 40 linear feet
- Stream 3 (S3): Perennial Waterway, 80 linear feet
- Stream 4 (S4): Intermittent Waterway, 20 linear feet
- Stream 5 (S5): Intermittent Waterway, 35 linear feet
- Stream 6 (S6): Ephemeral Waterway, 15 linear feet
- Stream 7 (S7): Ephemeral Waterway, 60 linear feet
- Stream 8 (S8): Perennial Waterway, UNT to Winters Run, 3,400 linear feet
- Winters Run (WR): Perennial Waterway, 2,500 linear feet

7.0 References

- Brown, L. 1979. *Grasses: An Identification Guide*. Houghton Mifflin Company; Boston, New York, London.
- Cowardin, L.M., F.C. Goblet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. Washington, D.C.: U.S. Department of Interior. Fish and Wildlife Service, 1979.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. Technical Report Y-87-1.
- ESRI ArcGIS Online Webservices. 2014. *Topographic Map 7.5' Quadrangles, Bel Air and Jarrettsville, MD.* Accessed October 5, 2015. Available online at https://doc.arcgis.com/en/arcgis-online/reference/arcgis-server-services.htm
- Kollmorgen Corporation. 1994. *Munsell Soil Color Charts*, Revised Edition. Macbeth Division of Kollmorgen Corporation, Baltimore, MD.
- Newcomb, Lawrence. 1977. Newcomb's Wildflower Guide. Little, Brown and Company.
- Maryland Department of the Environment. 2014. *Maryland's Designated Uses/Use Class Maps*.http://www.mde.state.md.us/programs/Water/TMDL/Water%20Quality%20Standards/Pages/DesignatedUsesMaps.aspx. Accessed October 6, 2015.
- Maryland Geological Survey. 1968. *Geologic Map of Maryland*. http://www.mgs.md.gov/geology/geologic_map/md_geologic_map.html
- Maryland Geological Survey. 2008. *Physiographic Map of Maryland*. http://www.mgs.md.gov/geology/physiographic_map.html
- Petrides, George A. 1986. A Field Guide to Trees and Shrubs. New York: Houghton Mifflin Co.
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed October 6, 2015.
- U.S. Fish and Wildlife Service. National Wetlands Inventory Wetlands Mapper. Accessed on October 5-6, 2015. Available online at http://www.fws.gov/wetlands/Data/mapper.html
- U.S. Army Corps of Engineers. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0, ed. J. F. Berkowitz, J. S. Wakeley, R. W. Lichvar, C. V. Noble. ERDC/EL TR-12-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

- U.S. Army Corps of Engineers. 2014. National Wetland Plant List, version 3.2. http://wetland_plants.usace.army.mil/. U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH.
- Weather Underground. 2015. "Weather History for KAPG, nearest airport to Bel Air, MD, September 29-30, 2014". Available online at http://www.wunderground.com/. Accessed October 6, 2015.

8.0 List of Contributors

David H. Graff, Senior Environmental Scientist, QA/QC

Professional Experience: 17 years

Education: B.S., Environmental Studies

M.A.Ed., Environmental Studies

38 Hour U.S. Army Corps of Engineers Wetland Delineator Certification Training

Habitat Evaluation Procedures (HEP) Certified

Professional Wetland Scientist, (PWS) No. 001385, Society of Wetland Scientists

Certified Senior Ecologist (CSE), Ecological Society of America

Certified Wildlife Biologist (CWB), The Wildlife Society

Autumn M. Thomas, Senior Environmental Scientist

Professional Experience: 16 years

Education: B.S., Environmental Science and Natural Resources Biology

Rutgers Wetland Delineation Certificate Series

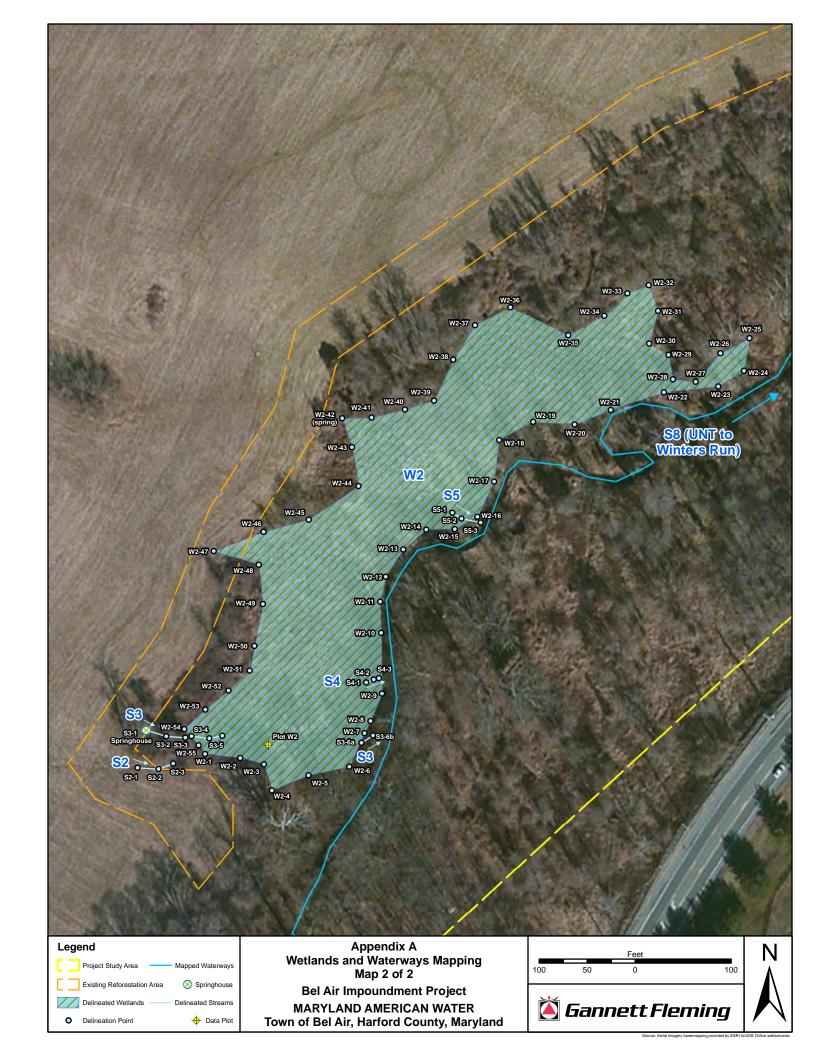
Regional Supplement to the Corps of Engineers Wetland Delineation Manual Update Workshop

USFWS & MDNR Recognized, Qualified Bog Turtle Surveyor

Samantha R. Hockenberry, Environmental Scientist

Professional Experience: 2 year

Education: B.S., Biology


M.S., Biology

36 Hour Swamp School Wetland Delineation & Regional Supplement Training Society of Freshwater Science Taxonomic Certification to Family Level for Aquatic Insects Certified Associate Ecologist (CAE), Ecological Society of America

APPENDIX A WETLANDS AND WATERWAYS MAPPING

APPENDIX B SITE PHOTOGRAPHS

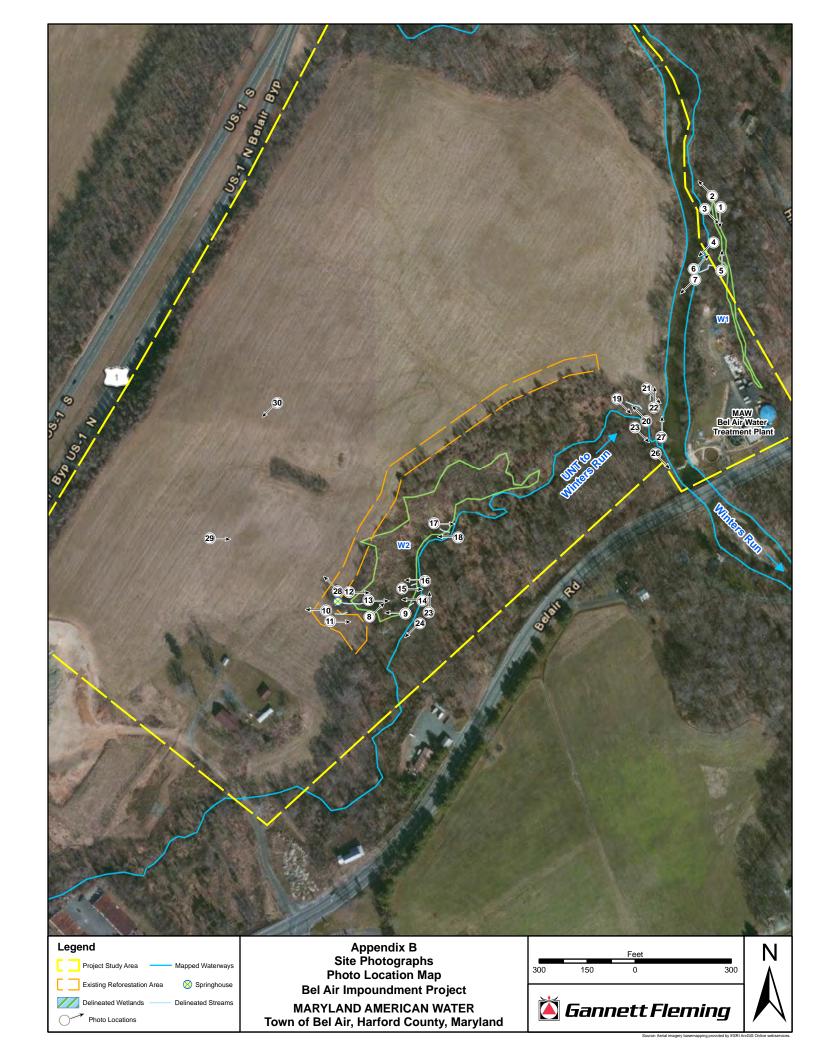


Photo 1 (09-29-2015)
Wetland 1 (W1) is a palustrine
emergent (PEM) wetland located on
the eastern bank floodplain of
Winters Run. View is close-up of
wetland plot.

Photo 2 (09-29-2015)
Wetland 1 (W1) extends off the project study area for a short distance before connecting to Winters Run. View is northwest from wetland plot.

Photo 3 (09-29-2015) Wetland 1 is a toe-of-slope drainage swale that is partially an unvegetated, concave surface. View is southeast from wetland plot.

Photo 4 (09-29-2015)
Upland plot for the project study area is on the floodplain of Winters Run.
View is southwest near Wetland 1 boundary and start of Stream 1.

Photo 5 (09-29-2015) Stream 1 (S1) is an ephemeral watercourse located between Wetland 1 and Winters Run. View is north and upstream from Flag S1-1.

Photo 6 (09-29-2015) Upstream view of Stream 1 from flag S1-4 looking northeast.

Photo 7 (09-29-2015)
Downstream view of Stream 1 at flag S1-4 looking south at junction with Winters Run.

Photo 8 (09-30-2015) Wetland 2 (W2) is a PEM wetland dominated by tearthumb, reed canary grass, and cattail. View is northeast at the wetland plot.

Site Photographs: Wetlands and Waterways



Photo 10 (09-30-2015) Upstream view of Stream 2, ephemeral stream originating at spring. View is west from flag S2-1.

Photo 11 (09-30-2015) Downstream view of Stream 2. View is east from flag S2-1.

Photo 12 (09-30-2015) Upstream view of Stream 3, perennial stream originating at springhouse. View is east from flag S3-4.

Photo 13 (09-30-2015)
Downstream view of Stream 3
before diffusing into Wetland 2.
View is east from flag S3-4.

Photo 14 (09-30-2015) Upstream view of Stream 3 when rechannelizes at UNT to Winters Run (S8). View is west from flag S3-6B.

Photo 15 (09-30-2015) Downstream view of Stream 4, intermittent stream draining Wetland 2 into UNT to Winters Run (S8). View is east from flag S4-1.

Photo 16 (09-30-2015) Upstream view of Stream 4 at junction with UNT to Winters Run (S8). View is northwest from flag S4-2.

Photo 17 (09-30-2015)

Downstream view of Stream 5, intermittent stream draining Wetland 2 into UNT to Winters Run (S8). View is east from flag S5-2.

Photo 18 (09-30-2015) Upstream view of Stream 5 at junction with UNT to Winters Run (S8). View is west from flag S5-3.

Photo 19 (09-30-2015)
Downstream view of Stream 6,
ephemeral drainage of overland flow
from agricultural field into UNT to
Winters Run (S8). View is southeast
from flag S6-1.

Photo 20 (09-30-2015) Upstream view of Stream 6 from junction with UNT to Winters Run (S8). View is northwest from flag S6-2.

Photo 21 (09-30-2015)
Downstream view of Stream 7,
ephemeral drainage of overland flow
from agricultural field into UNT to
Winters Run (S8). View is southeast
from flag S7-1.

Photo 22 (09-30-2015) Upstream view of Stream 7 from junction with UNT to Winters Run (S8). View is north from flag S7-3.

Photo 23 (09-29-2015) Downstream view of Stream 8, UNT to Winters Run (S8). View is north near flag W2-11.

Photo 24 (09-29-2015) Upstream view of Stream 8, UNT to Winters Run (S8). View is southwest near flag W2-11.

Photo 25 (09-30-2015)
Downstream view of Stream 8, UNT to Winters Run (S8) at junction with Winters Run after heavy rains previous evening. View is southeast near flag S7-3.

Photo 26 (09-30-2015)

Downstream view of Winters Run (WR) at junction with UNT to Winters Run (S8) after heavy rains previous evening. View is southeast.

Photo 27 (09-30-2015)
Upstream view of Winters Run (WR) at junction with UNT to Winters Run (S8) after heavy rains previous evening. View is north.

Photo 28 (11-02-2015) View of springhouse source of Stream 3. View is northwest.

Photo 29 (09-30-2015) View of harvested corn field and reforestation area in distance. View is east.

Photo 30 (09-30-2015) View of harvested corn field with former barn and new residential development construction in distance. View is southwest.

APPENDIX C WETLAND FIELD DATA FORMS AND FUNCTION & VALUE FORMS

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont

Project/Site: Bel Air Reservoir	City/County: Bel Air / Harford County Sampling Date: 09/29/2015
Applicant/Owner: Maryland American Water (MAW)	City/County: Bel Air / Harford County Sampling Date: 09/29/2015 State: MD Sampling Point: Plot U1
Investigator(s): A. Thomas, S. Hockenberry	Section, Township, Range: Town of Bel Air
	Local relief (concave, convex, none): none
	Long: 76.368791°W Datum: NAD83
Soil Map Unit Name: Codorus silt loam (Cu)	
	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of yeare Vegetation, Soil, or Hydrology significantly	
Are Vegetation, Soil, or Hydrology naturally pro	
	g sampling point locations, transects, important features, etc.
/ Attach site map showing	j sampling point locations, transects, important reatures, etc.
Hydrophytic Vegetation Present? Yes No	Is the Sampled Area
Hydric Soil Present? Yes No	within a Wetland? Yes No
Wetland Hydrology Present? Yes No	
Remarks:	al Maria I de Maria Distribution de la Companya del Companya del Companya de la C
	th Wetland 1 (W1). Plot U1 was located on a floodplain bench
near Winters Run.	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic P	Plants (B14) Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfi	
	ospheres on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Re	
	eduction in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Surf	
Algal Mat or Crust (B4) Other (Explain	
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)	Shallow Aquitard (D3) Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	1 AO-Neutral Test (D3)
Surface Water Present? Yes No _ ✓ _ Depth (inches	3).
Water Table Present? Yes No _ Depth (inches	
Saturation Present? Yes No _ ✓ Depth (inches	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photo	os, previous inspections), if available:
Percelo	
Remarks:	

20	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 30		Species?		Number of Dominant Species
1. Juglans nigra	40	Υ	FACU	That Are OBL, FACW, or FAC: 2 (A)
2				
				Total Number of Dominant Species Across All Strata: 4 (B)
3				Species Across All Strata: 4 (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 50 (A/B)
6				
Total Cover:	40			Prevalence Index worksheet:
50% of total cover: <u>20</u>		f total cover	8	Total % Cover of: Multiply by:
Sapling Stratum (Plot size: 15		i total oovol	•	OBL species 10 x 1 = 10
				FACW species 10 $x 2 = 20$
1				400
2				
3				FACU species 45 x 4 = 180
4				UPL species <u>20</u> x 5 = <u>100</u>
5				Column Totals: 185 (A) 610 (B)
6Total Cover.	0			Prevalence Index = $B/A = 3.30$
			0	Hydrophytic Vegetation Indicators:
50% of total cover: <u>0</u>	20% o	t total cover	-: <u>U</u>	1- Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 15)	00	V	EAC	
1. Lindera benzoin	20	<u>Y</u>	FAC	2 - Dominance Test is >50%
2. Rubus occidentalis	20	Υ	UPL	3 - Prevalence Index is ≤3.0 ¹
3. Rosa multiflora	5		FACU	4 - Morphological Adaptations (Provide supporting
<u> </u>				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
6				11-45-4
Total Cover:	45			¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
50% of total cover: 22.5	20% of	f total cover	. 9	
Herb Stratum (Plot size: 5				Definitions of Five Vegetation Strata:
1. Microstegium vimineum	80	Υ	FAC	Tree – Woody plants, excluding woody vines,
2. Persicaria hydropiperoides	10		OBL	approximately 20 ft (6 m) or more in height and 3 in.
				(7.6 cm) or larger in diameter at breast height (DBH).
3. Pilea pumila	5		FACW	
4. Persicaria maculosa	5		FACW	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less
5				than 3 in. (7.6 cm) DBH.
6.				than 6 m. (7.6 om) BBH.
				Shrub – Woody plants, excluding woody vines,
7				approximately 3 to 20 ft (1 to 6 m) in height.
8				Have All have account (non-woody) plants including
9				Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes woody
10				plants, except woody vines, less than approximately 3
11.				ft (1 m) in height.
Total Cover	. 100			
			20	Woody vine – All woody vines, regardless of height.
50% of total cover: <u>50</u>	20% 0	r total cover	120	
Woody Vine Stratum (Plot size: 30)				
1				
2				
3				
				Hydrophytic
4				Vegetation
Total Cover:			^	Present? Yes No _✓
50% of total cover: 0	20% o	f total cover	<u>: 0</u>	
Remarks: (Include photo numbers here or on a separate s	heet)			1
Tromaino. Imorado prioto flumboro fiere di un a separate s				

SOIL Sampling Point: Plot U1

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix			ox Features	1 0				
(inches)	Color (moist)	<u>%</u>	Color (moist)	%Type	Loc ²	<u>Texture</u>		Remarks	
0 - 18+	7.5YR 4/4	100				LS	Fibrous	roots in upp	per 2"
	-								
							_		
							_		
							_		
	-								
							_		
							_		
	-					-			
	oncentration, D=Dep	oletion, RM=	Reduced Matrix, M	S=Masked Sand	Grains.			Pore Lining, M	
Hydric Soil I	Indicators:					Indi	cators for Pr	oblematic Hy	dric Soils ³ :
Histosol			— Dark Surface	e (S7)			2 cm Muck (A	A10) (MLRA 1 4	47)
	pipedon (A2)		— Polyvalue Be		(MLRA 147	148) —	Coastal Prair	ie Redox (A16	6)
Black Hi			Thin Dark Su			,	(MLRA 14	7, 148)	
	n Sulfide (A4)		— Loamy Gleye		,,	_		odplain Soils	(F19)
	d Layers (A5)		— Depleted Ma				(MLRA 13		
	ick (A10) (LRR N)	(0.4.4)	Redox Dark S	, ,		_		Dark Surface	
	d Below Dark Surface	e (A11)	— Depleted Da			_	Other (Expla	in in Remarks))
	ark Surface (A12) lucky Mineral (S1) (I DD N	— Redox Depre						
		LKK N,	Iron-Mangan		() (LRR N,				
	147, 148) Gleyed Matrix (S4)		MLRA 13	ace (F13) (MLRA	136 122)	³ In	dicators of hy	drophytic vege	etation and
	ledox (S5)			oodplain Soils (F1				ology must be	
	Matrix (S6)			Material (F21) (M				bed or problen	
	_ayer (if observed)	:	Red r archit	viatoriai (i 2 i) (ivi	-IVA 127, 147	<u>''</u>	dilicoo diotan	bed of problem	iatio.
Type:									
	ahaa).					Usadaia Ca	il Dragant?	Vaa	No. /
	ches):					nyuric 30	il Present?	Yes	No <u>√</u>
Remarks:									
ı									
ı									

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont

Project/Site: Bel Air Reservoir	City/County: Bel Air / Harford County Sampling Date: 09/29/2015
Applicant/Owner: Maryland American Water (MAW)	State: MD Sampling Point: Plot W1
	Section, Township, Range: Town of Bel Air
Landform (hillslope, terrace, etc.): linear depression	Local relief (concave, convex, none): Concave
Slope (%): 0 Lat: 39.518001°N	
Soil Map Unit Name: Codorus silt Ioam (Cu)	NWI classification: PEM
Are climatic / hydrologic conditions on the site typical for this time of	,
Are Vegetation, Soil, or Hydrology significa	
Are Vegetation, Soil, or Hydrology naturally	
SUMMARY OF FINDINGS – Attach site map show	ing sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No	Is the Sampled Area
Hydric Soil Present? Yes No	— within a Wetland? Yes No
Wetland Hydrology Present? Yes ✓ No	
Remarks:	Motland 4 (M4). Plat M4 was within a linear depression clare the
base of a forested slope located in the floodplain of V	Wetland 1 (W1). Plot W1 was within a linear depression along the
base of a forested slope located in the hoodplain of v	vinters ivan.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that app	-
	ic Plants (B14) Sparsely Vegetated Concave Surface (B8)
	Sulfide Odor (C1) Drainage Patterns (B10)
	nizospheres on Living Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence o	f Reduced Iron (C4) Dry-Season Water Table (C2)
	Reduction in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck	
	ain in Remarks) Stunted or Stressed Plants (D1)
Iron Deposits (B5)	✓ Geomorphic Position (D2)
 Inundation Visible on Aerial Imagery (B7)✓ Water-Stained Leaves (B9)	Shallow Aquitard (D3) ✓ Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Surface Water Present? Yes No _✓_ Depth (inc	hes):
Water Table Present? Yes No _ ✓ Depth (inc	
Saturation Present? Yes No _ ✓ Depth (inc	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial p	
Describe Necorded Data (Stream gauge, monitoring well, aerial p	notos, previous inspections), ir available.
Remarks:	
The sampling plot was located in a vegetated area of	f the wetland; however, the middle section of the wetland was a
	ection lacked vegetation except scattered over-wintering flowers of
skunk cabbage that had recently broken the soil surfa	ace.

		Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: 30		Species?		Number of Dominant Species	
1				That Are OBL, FACW, or FAC: 1 (A)	
2				Total Number of Deminent	
3				Total Number of Dominant Species Across All Strata: 2 (B)	
4.				(5)	
				Percent of Dominant Species	
5				That Are OBL, FACW, or FAC: 50 (A/I	B)
6.	0			Prevalence Index worksheet:	
Total Cover:			0	Total % Cover of: Multiply by:	
50% of total cover: <u>0</u>	20% o	f total cover	: <u>U</u>	OBL species 20 x 1 = 20	
Sapling Stratum (Plot size: 15)					
1				FACW species $\frac{35}{70}$ $\times 2 = \frac{70}{240}$	
2				FAC species <u>70</u> x 3 = <u>210</u>	
3				FACU species 10 $x 4 = 40$	
4				UPL species $0 x 5 = 0$	
5				Column Totals: 135 (A) 340 (B	3)
				(2	,
6 Total Cover:				Prevalence Index = $B/A = 2.5$	
			0	Hydrophytic Vegetation Indicators:	
50% of total cover: 0	20% c	total cover	<u></u>	1- Rapid Test for Hydrophytic Vegetation	
Shrub Stratum (Plot size: 15) 1. Rosa multiflora	10	V	FACU	2 - Dominance Test is >50%	
··· 					
2				✓ 3 - Prevalence Index is ≤3.0 ¹	
3				4 - Morphological Adaptations (Provide supporting	ng
4				data in Remarks or on a separate sheet)	
5				Problematic Hydrophytic Vegetation ¹ (Explain)	
6					
Total Cover:				¹ Indicators of hydric soil and wetland hydrology must	
50% of total cover: 5		f total agver	. 2	be present, unless disturbed or problematic.	
Herb Stratum (Plot size: 5	20 /0 0	i lulai cuvei	· =	Definitions of Five Vegetation Strata:	
1. Microstegium vimineum	70	Υ	FAC	Tree – Woody plants, excluding woody vines,	
2. Persicaria hydropiperoides	15		OBL	approximately 20 ft (6 m) or more in height and 3 in.	
	10			(7.6 cm) or larger in diameter at breast height (DBH).	
3. Pilea pumila			FACW		
4. Impatiens capensis	10		FACW	Sapling – Woody plants, excluding woody vines, approximately 20 ft (6 m) or more in height and less	
5. Persicaria hydropiper	5		OBL	than 3 in. (7.6 cm) DBH.	
6. Persicaria maculosa	5		FACW	,	
0	<u> </u>		171011		
				Shrub – Woody plants, excluding woody vines,	
7. Phalaris arundinacea	5 5		FACW	Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.	
7. Phalaris arundinacea8. Laportea canadensis	5 5		FACW FACW		
 Phalaris arundinacea Laportea canadensis 	5		FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood	ly
7. Phalaris arundinacea 8. Laportea canadensis 9.	5		FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3	ly
7. Phalaris arundinacea 8. Laportea canadensis 9. 10	5		FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood	ly
7. Phalaris arundinacea 8. Laportea canadensis 9. 10	5 5 125		FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 125		FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height.	ly
7. Phalaris arundinacea 8. Laportea canadensis 9. 10	5 5 125		FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height.	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height.	ly
7. Phalaris arundinacea 8. Laportea canadensis 9. 10	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height.	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height.	ly
7. Phalaris arundinacea 8. Laportea canadensis 9. 10. 11	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly
7. Phalaris arundinacea 8. Laportea canadensis 9.	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately 3 ft (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly
7. Phalaris arundinacea 8. Laportea canadensis 9.	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly
7. Phalaris arundinacea 8. Laportea canadensis 9	5 5 	f total cover	FACW FACW	approximately 3 to 20 ft (1 to 6 m) in height. Herb – All herbaceous (non-woody) plants, including herbaceous vines, regardless of size. Includes wood plants, except woody vines, less than approximately of t (1 m) in height. Woody vine – All woody vines, regardless of height. Hydrophytic Vegetation	ly

SOIL Sampling Point: Plot W1

Profile Desc	ription: (Describe	to the de	pth needed to docu	ment the	indicator	or confirm	n the absence	of indicators.)
Depth	Matrix			x Feature				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	<u>Texture</u>	Remarks
0 - 2	10YR 4/2	85	7.5YR 4/6	10	<u>C</u>	<u>M</u>	SiS	fine sand & fibrous roots
			7.5YR 3/4	5	<u>C</u>	PL		
2 - 10	10YR 5/2	75	10YR 5/6	20	C	M	<u>S</u>	fine and coarse sand
			10YR 4/6	5	С	PL		
10 - 18+	10YR 5/1	80	7.5YR 4/6	15	С	M	SiS	buried organics
	-		7.5YR 4/4	5	С	PL		
¹ Type: C=Co	oncentration, D=Dep	oletion, RM	I=Reduced Matrix, M	S=Maske	d Sand Gi	ains.	² Lo	cation: PL=Pore Lining, M=Matrix.
Hydric Soil		,	,					ators for Problematic Hydric Soils ³ :
Histosol			— Dark Surface	e (S7)			2	2 cm Muck (A10) (MLRA 147)
	pipedon (A2)		— Polyvalue Be		ce (S8) (N	ILRA 147,	148) — (Coastal Prairie Redox (A16)
Black Hi	stic (A3) n Sulfide (A4)		— Thin Dark Su	rface (S9) (MLRA 1		•	(MLRA 147, 148)
	l Layers (A5)		— Loamy Gleye		(F2)		+	Piedmont Floodplain Soils (F19) (MLRA 136, 147)
	ick (A10) (LRR N)		— Depleted Mar — Redox Dark S	, ,	-6)		\	/ery Shallow Dark Surface (TF12)
Depleted	d Below Dark Surfac	ce (A11)	— Depleted Da	,	,			Other (Explain in Remarks)
	ark Surface (A12)		— Redox Depre	essions (F	8)			
	lucky Mineral (S1) (LRR N,	Iron-Mangan		ses (F12) (LRR N,		
	147, 148) sleyed Matrix (S4)		MLRA 13 Umbric Surfa		(MIRA 13	86 122)	³ Inc	licators of hydrophytic vegetation and
✓ Sandy R			Piedmont Flo					vetland hydrology must be present,
	Matrix (S6)		Red Parent N					inless disturbed or problematic.
Restrictive I	ayer (if observed)	:						
Type:								
	ches):						Hydric Soi	I Present? Yes <u>√</u> No
Remarks:								

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont

Project/Site: Bel Air Reservoir	City/County: Bel Air / Harford County Sampling Date: 09/30/2015				
Applicant/Owner: Maryland American Water (MAW)	State: MD Sampling Point: Plot W2				
Investigator(s): A. Thomas, S. Hockenberry	Section, Township, Range: Town of Bel Air				
Landform (hillslope, terrace, etc.): terrace	Local relief (concave, convex, none): none				
Slope (%): 0 Lat: 39.51458°N Soil Map Unit Name: Delanco silt loam, 3 to 8 percent slope	s (DcB) NWI classification: PEM				
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes No (If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrology significantly					
Are Vegetation, Soil, or Hydrology naturally pr					
	g sampling point locations, transects, important features, etc.				
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Yes No No No Remarks:	within a Wetland? Yes No				
Plot W2 was the hydric sampling plot associated with W of hills that were recently harvested for corn and along	Vetland 2 (W2). Plot W2 was within a terrace located at the base the floodplain of an unnamed tributary to Winters Run.				
HYDROLOGY					
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)				
Surface Water (A1) True Aquatic F	Plants (B14) Sparsely Vegetated Concave Surface (B8)				
✓ High Water Table (A2) ✓ Hydrogen Sulf	fide Odor (C1) Drainage Patterns (B10)				
✓ Saturation (A3) ✓ Oxidized Rhizo	ospheres on Living Roots (C3) Moss Trim Lines (B16)				
Water Marks (B1) Presence of R	leduced Iron (C4) Dry-Season Water Table (C2)				
Sediment Deposits (B2) Recent Iron Re	eduction in Tilled Soils (C6) Crayfish Burrows (C8)				
Drift Deposits (B3) Thin Muck Sur	rface (C7) Saturation Visible on Aerial Imagery (C9)				
Algal Mat or Crust (B4) Other (Explain	n in Remarks) Stunted or Stressed Plants (D1)				
✓ Iron Deposits (B5)	✓ Geomorphic Position (D2)				
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)				
Water-Stained Leaves (B9)	✓ Microtopographic Relief (D4)				
Aquatic Fauna (B13)	FAC-Neutral Test (D5)				
Field Observations:					
Surface Water Present? Yes No _✓ Depth (inches					
Water Table Present? Yes <u>✓</u> No Depth (inches					
Saturation Present? Yes No Depth (inches	s): 0 (surface) Wetland Hydrology Present? Yes _✓ No				
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial phot	tos previous inspections) if available:				
Describe Necorded Data (stream gauge, monitoring well, aerial prior	os, previous inspections), il available.				
Remarks:					
Nomano.					

VEGETATION (Five Strata) – Use scientific names of plants.

EGETATION (Five Strata) -	- Use scientific nan	nes of pla	ants.		Sampling Point: Plot V	V2
			Dominant		Dominance Test worksheet:	-
Tree Stratum (Plot size: 30 1.			Species?		Number of Dominant Species That Are OBL, FACW, or FAC: 2 ((Δ)
2						, ()
3					Total Number of Dominant Species Across All Strata: 2 ((B)
4					opecies Across All ottata.	(ت
5					Percent of Dominant Species That Are OBL, FACW, or FAC: 50 (/
6					That Ale OBL, FACW, of FAC	(A/D)
-	Total Cover:	0			Prevalence Index worksheet:	
509	% of total cover: 0	20% o	f total cove	<u>.</u> 0	Total % Cover of: Multiply by:	
Sapling Stratum (Plot size: 15)				OBL species x 1 =	
1					FACW species x 2 =	
2					FAC species x 3 =	
3					FACU species x 4 =	
4					UPL species x 5 =	
5					Column Totals: (A)	(B)
6					Prevalence Index = B/A =	
	Total Cover:				Hydrophytic Vegetation Indicators:	
509	% of total cover: 0	20% o	f total cove	r: <u>0</u>	✓ 1- Rapid Test for Hydrophytic Vegetation	
. ,)				✓ 2 - Dominance Test is >50%	
1					3 - Prevalence Index is ≤3.0 ¹	
2					4 - Morphological Adaptations (Provide suppo	ortina
3					data in Remarks or on a separate sheet)	Jillig
4					Problematic Hydrophytic Vegetation ¹ (Explain))
5						
6		0			¹ Indicators of hydric soil and wetland hydrology mu	ust
500	Total Cover: 6 of total cover:		f total agreement	O	be present, unless disturbed or problematic.	
Herb Stratum (Plot size: 5	% of total cover	20% 0	i total cover		Definitions of Five Vegetation Strata:	
Persicaria sagittata	/	50	Υ	OBL	Tree – Woody plants, excluding woody vines,	
2. Phalaris arundinacea		30	Y	FACW	approximately 20 ft (6 m) or more in height and 3 ir	
3. Persicaria hydropiperoides	 }	20		OBL	(7.6 cm) or larger in diameter at breast height (DBI	H).
4. Leersia oryzoides		20		OBL	Sapling – Woody plants, excluding woody vines,	
5. Impatiens capensis		10		FACW	approximately 20 ft (6 m) or more in height and les	SS
6. Persicaria hydropiper		10		OBL	than 3 in. (7.6 cm) DBH.	
7. Pilea pumila		5		FACW	Shrub - Woody plants, excluding woody vines,	
8. Persicaria arifolia				OBL	approximately 3 to 20 ft (1 to 6 m) in height.	
					Herb - All herbaceous (non-woody) plants, includir	ng
9					herbaceous vines, regardless of size. Includes wo plants, except woody vines, less than approximatel	
10					ft (1 m) in height.	лу З
11	Total Cover				, ,	L (
50	% of total cover: 75		f total cover	: 30	Woody vine – All woody vines, regardless of heigh	nt.
Woody Vine Stratum (Plot size: 30						
2.						
3.						
4.					Hydrophytic	
	Total Cover:				Vegetation Present? Yes ✓ No	
50%	% of total cover: 0		f total cover	·: 0	100 <u>v</u> 10 <u>u</u>	
					1	
Remarks: (Include photo numbers h	iere or on a separate si	neet.)				
The center of Wetland 2 was	dominated by Typ	ha latifoli	a (OBL).			
	-, , , , ,		, ,			

SOIL Sampling Point: Plot W2

Depth	ription: (Describe	to the de	pin needed to docu		maioatoi	01 00111111	n the absenc	e of indicators.)		
	Matrix			ox Feature	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0 - 4	10YR 4/1	97	10YR 4/6	3	С	PL	SSiL	fibrous roots		
4 - 10	10YR 5/2	95	10YR 4/6	5	С	M	SSiL			
10 - 20+	10YR 4/2	97	10YR 4/4	3	С	M	SiL			
					- —					
		_	<u> </u>		_					
			<u> </u>		_					
			-				-			
-	-				_		-	<u> </u>		
					_					
¹ Type: C=Co	oncentration. D=De	oletion. RN	/I=Reduced Matrix, M	S=Maske	d Sand G	ains.	² L	ocation: PL=Pore Lining, M=Matrix.		
Hydric Soil						<u></u>		cators for Problematic Hydric Soils ³ :		
Histosol			Daule Confee	- (07)				2 cm Muck (A10) (MLRA 147)		
	oipedon (A2)		— Dark Surface		(00) (1	U DA 447		Coastal Prairie Redox (A16)		
Black Hi			— Polyvalue Be — Thin Dark Su				148)	(MLRA 147, 148)		
Hydroge	n Sulfide (A4)		— Loamy Gley			47, 140)		Piedmont Floodplain Soils (F19)		
	l Layers (A5)		— Depleted Ma		()			(MLRA 136, 147)		
	ick (A10) (LRR N)		✓ Redox Dark		- 6)		_	Very Shallow Dark Surface (TF12)		
	Below Dark Surfa	ce (A11)	— Depleted Da		. ,			Other (Explain in Remarks)		
	ark Surface (A12)	I DD N	— Redox Depr							
-	lucky Mineral (S1)	LKK N,	Iron-Mangar		ses (F12) (LRR N,				
	147, 148) sleyed Matrix (S4)		MLRA 13		(MIRA 13	86 122)	³ In	dicators of hydrophytic vegetation and		
	edox (S5)		Piedmont Fl					wetland hydrology must be present,		
	Matrix (S6)		Red Parent					unless disturbed or problematic.		
	_ayer (if observed):		(1	/ (1			
Type:										
	ches):						Hydric So	oil Present? Yes <u>√</u> No		
Remarks:							, , , , , ,			
rtomanto.										
İ										

Wetland Function-Value Evaluation Form

						Wetland I.D. W1
Total area of wetland 0.161 Human made? No	Is	s wetla	and part of a wildlife corridor	? Yes	or a "habitat island"? No	Latitude 39.5180°N Longitude 76.3689°W
Adjacent land use Winters Run, floodplain, Water	r Trea	tment	Plant Distance to nearest r	oadway or	other development <50 feet	Prepared by: SRH Date 10/5/2015
Dominant wetland systems present PEM			Contiguous undeve	loped buffe	er zone present No	Wetland Impact: Type <u>Unknown</u> Area <u>Unknown</u>
Is the wetland a separate hydraulic system? No How many tributaries contribute to the wetland?	None		_Wildlife & vegetation divers	ity/abunda	ance (see attached list)	Evaluation based on: Office
Function/Value		abilit N	y Rationale (Reference #)*	Princip Functi		Comments
▼ Groundwater Recharge/Discharge		X				
Floodflow Alteration	X		2, 4, 5, 7, 9, 10, 13	X	W1 is in a toe-slope linear depres	ssion in the Winters Run floodplain.
Fish and Shellfish Habitat		X				
Sediment/Toxicant Retention	X		1, 2, 3, 4, 10			
Nutrient Removal	X		3, 4, 7			
→ Production Export		X				
Sediment/Shoreline Stabilization		X				
₩ Wildlife Habitat		X				
Recreation		X				
Educational/Scientific Value		X				
★ Uniqueness/Heritage		X				
Visual Quality/Aesthetics		X				
ES Endangered Species Habitat		X				
Other		X				

Notes:

Wetland Function-Value Evaluation Form

						Wetland I.D. W2
Total area of wetland 1.872 Human made? No	I	s wetla	and part of a wildlife corridor?	Yes	or a "habitat island"?No	Latitude 39.5146°N Longitude 76.3726°W
Adjacent land use Ag. Fields, UNT to Winters Re	un		Distance to nearest ro	oadway or	other development_200+ feet	Prepared by: SRH Date 10/5/2015
Dominant wetland systems present_PEM			Contiguous undevelo	oped buffe	er zone presentNo	Wetland Impact: Type Unknown Area Unknown
Is the wetland a separate hydraulic system? No How many tributaries contribute to the wetland? Function/Value	None Suita	abilit	_Wildlife & vegetation diversi	ty/abunda Princij	pal	Evaluation based on: Office X Field X Corps manual wetland delineation completed? Y X N
	$\frac{1}{}$	N		Tuncu		
Groundwater Recharge/Discharge			1, 2, 4, 5, 10, 13, 15		Spring house and spring were loca	ated on eage of wetland.
Floodflow Alteration		$ \times $				
Fish and Shellfish Habitat		X				
Sediment/Toxicant Retention	X		1, 2, 3, 4, 5, 6, 7, 8, 10, 16	X	Located downslope of agricultural	fields and within floodplain of stream.
Nutrient Removal	X		3, 4, 5, 6, 7, 9, 10		Deep organic, mucky soils in center	er of wetland.
→ Production Export		X				
Sediment/Shoreline Stabilization		X				
W ildlife Habitat	X		1, 3, 6, 8, 11, 17, 18, 19, 21	×	Raccoon, deer, and opossum trac	ks were visible, damselflies were present.
Recreation		X				
Educational/Scientific Value		X				
★ Uniqueness/Heritage		X				
Visual Quality/Aesthetics		X				
ES Endangered Species Habitat		X				
Other		X				

Notes:

Wetland Identification and Delineation Report Bel Air Impoundment Project Bel Air, Harford County

APPENDIX D PROJECT ENVIRONMENTAL REVIEW LETTERS

Martin O'Malley, Governor Anthony G. Brown, Lt. Governor Joseph P. Gill, Secretary Frank W. Dawson III, Deputy Secretary

September 17, 2014

Danielle Iuliucci Gannett Fleming, Inc. PO Box 67100 Harrisburg, PA 17106-7100

RE: Environmental Review for The American Water Company, Bel Air Reservoir Feasibility Study, Bel Air, US Route 1, Winters Run, Harford County, MD.

Dear Ms. Iuliucci:

The Wildlife and Heritage Service has determined that there are no State or Federal records for rare, threatened or endangered species within the boundaries of the project site as delineated. As a result, we have no specific comments or requirements pertaining to protection measures at this time. This statement should not be interpreted however as meaning that rare, threatened or endangered species are not in fact present. If appropriate habitat is available, certain species could be present without documentation because adequate surveys have not been conducted.

Thank you for allowing us the opportunity to review this project. If you should have any further questions regarding this information, please contact me at (410) 260-8573.

Sincerely,

Lori A. Byrne,

Environmental Review Coordinator Wildlife and Heritage Service MD Dept. of Natural Resources

ER# 2014.1333.ha

August 27, 2014

Lori Byrne DNR Wildlife & Heritage Service 580 Taylor Avenue Tawes Office Bldg E-1 Annapolis, MD 21401 **GANNETT FLEMING, INC.** P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

MAILED 8/27/14 Certified 7013 2250 0000 4345 7922

RE: Request for Environmental Review

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

Dear Ms. Byrne:

Gannett Fleming, Inc. (Gannett Fleming) is requesting an environmental review of a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting an environmental review to determine if any species of concern occur within or in close proximity to the study area. Please refer to **Figure 1** for the USGS topographic map of the study area. **Figure 2** provides an aerial photograph of the project study area.

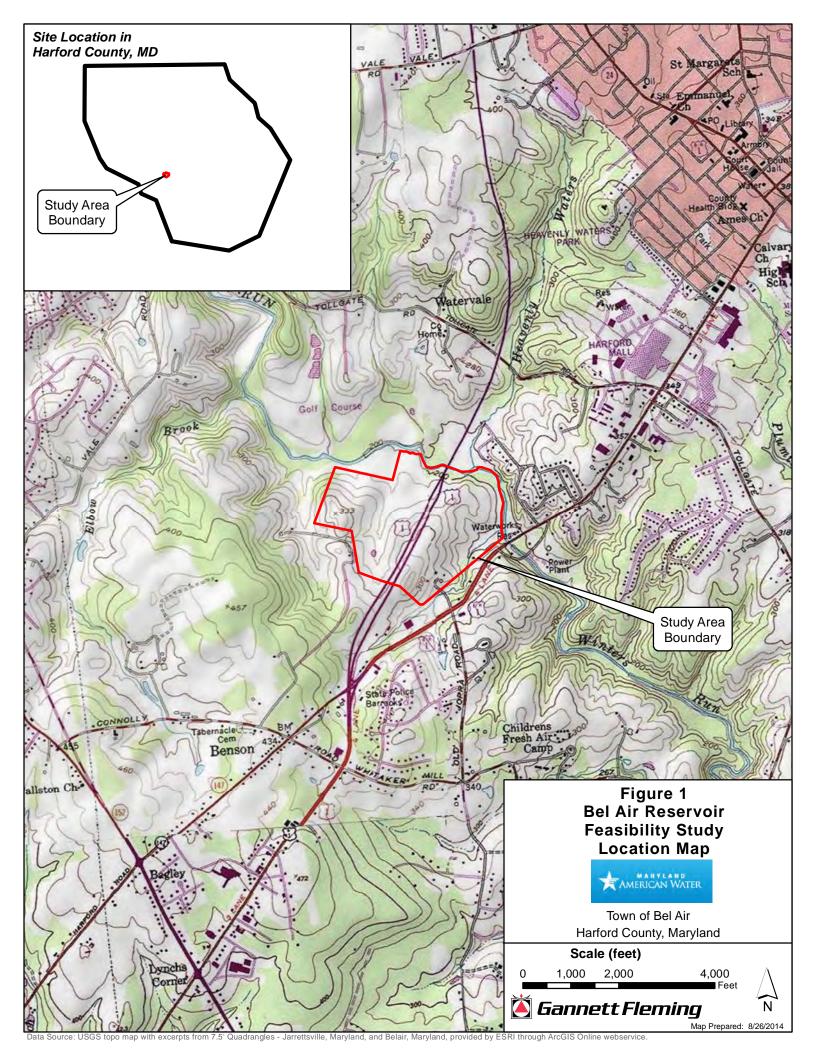
The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area. We would appreciate an expedited environmental review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci

Environmental Scientist


Attachments

Copies Furnished (electronically): S. List

S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist

File

United States Department of the Interior

U.S. Fish & Wildlife Service Chesapeake Bay Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401 410/573 4575

Online Certification Letter

Today's date: September 22, 2014

Project: The Maryland American Water Company

Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

Dear Applicant for online certification:

Thank you for using the U.S. Fish and Wildlife Service (Service) Chesapeake Bay Field Office online project review process. By printing this letter in conjunction with your project review package, you are certifying that you have completed the online project review process for the referenced project in accordance with all instructions provided, using the best available information to reach your conclusions. This letter, and the enclosed project review package, completes the review of your project in accordance with the Endangered Species Act of 1973 (16 U.S.C. 1531-1544, 87 Stat. 884), as amended (ESA). This letter also provides information for your project review under the National Environmental Policy Act of 1969 (P.L. 91-190, 42 U.S.C. 4321-4347, 83 Stat. 852), as amended. A copy of this letter and the project review package must be submitted to this office for this certification to be valid. This letter and the project review package will be maintained in our records.

Based on this information and in accordance with section 7 of the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.), we certify that except for occasional transient individuals, no federally proposed or listed endangered or threatened species are known to exist within the project area. Therefore, no Biological Assessment or further section 7 consultation with the U.S. Fish and Wildlife Service is required. Should project plans change, or if additional information on the distribution of listed or proposed species becomes available, this determination may be reconsidered.

This response relates only to federally protected threatened or endangered species under our jurisdiction. For additional information on threatened or endangered species in Maryland, you should contact the Maryland Wildlife and Heritage Division at (410) 260-8540. For information in Delaware you should contact the Delaware Natural Heritage and Endangered Species Program, at (302) 653-2880. For information in the District of Columbia, you should contact the National Park Service at (202) 535-1739.

The U.S. Fish and Wildlife Service also works with other Federal agencies and states to minimize loss of wetlands, reduce impacts to fish and migratory birds, including bald eagles, and restore habitat for wildlife. Information on these conservation issues and how development projects can avoid affecting these resources can be found on our website (www.fws.gov/chesapeakebay)

We appreciate the opportunity to provide information relative to fish and wildlife issues, and thank you for your interest in these resources. If you have any questions or need further assistance, please contact Chesapeake Bay Field Office Threatened and Endangered Species program at (410) 573-4527.

Sincerely,

Genevieve LaRouche Field Supervisor

August 27, 2014

US Fish and Wildlife Service Chesapeake Bay Ecological Services Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401

RE: Project Review Request

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

To whom it may concern:

GANNETT FLEMING, INC. P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

SUBMITTED ELECTRONICALLY 8/27/14

Gannett Fleming, Inc. (Gannett Fleming) is requesting a project review from the US Fish and Wildlife Service's Chesapeake Bay Ecological Services Field Office for a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting a project review to determine if any species of concern occur within or in close proximity to the study area.

Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC.

The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in

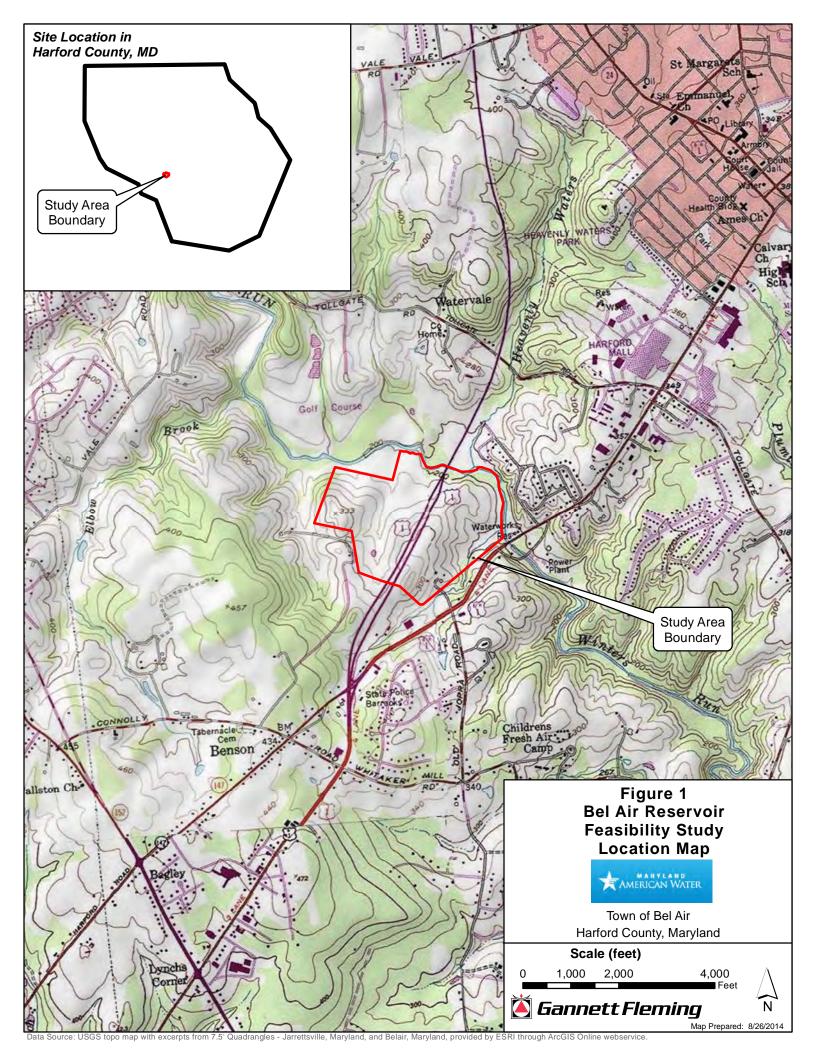
an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

The Information, Planning, and Conservation (IPaC) System indicated that no listed species, critical habitats, or national wildlife refuges were found within the vicinity of the proposed project. The IPaC System identified 13 migratory birds of concern that may be impacted. Three (3) National Wetlands Inventory wetland types were identified within the project study area, including freshwater forested/shrub wetland (PFO1A), freshwater pond (PUBHx), and riverine (R2UBH). Please refer to **Attachment 1** for the USGS topographic map of the study area. **Attachment 2** provides an aerial photograph of the project study area and **Attachment 3** provides the IPaC System Trust Resources List.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area as well as any conservation measures that should be implemented. We would appreciate an expedited review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci


Environmental Scientist

Attachments

Copies Furnished (electronically): S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist S. Smith, GF Environmental Scientist

File

Trust Resources List

This resource list is to be used for planning purposes only — it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

Chesapeake Bay Ecological Services Field Office 177 ADMIRAL COCHRANE DRIVE ANNAPOLIS, MD 21401 (410) 573-4599

Project Name:

Bel Air Reservoir Feasibility Study

Trust Resources List

Project Location Map:

Project Counties:

Harford, MD

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83):

MULTIPOLYGON (((-76.3774704 39.519473, -76.376612 39.5211613, -76.3759469 39.5208799, -76.3750885 39.5208634, -76.3745736 39.519953, -76.3732217 39.5201185, -76.3722776 39.5197047, -76.3702177 39.5198206, -76.3695739 39.5194399, -76.3692306 39.5187281, -76.3691877 39.5180329, -76.3690804 39.5174039, -76.3693808 39.5162783, -76.3690589 39.5156161, -76.3757069 39.5123041, -76.3772133 39.5133644, -76.3801487 39.5142417, -76.3804985 39.5165925, -76.383288 39.5171884, -76.3815724 39.5204824, -76.3774704 39.519473)))

Trust Resources List

Project Type:

Dam

Endangered Species Act Species List (<u>USFWS Endangered Species Program</u>).

There are no listed species found within the vicinity of your project.

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (<u>USFWS National Wildlife Refuges Program</u>).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (<u>USFWS Migratory Bird Program</u>).

The protection of birds is regulated by the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA). Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. For more information regarding these Acts see http://www.fws.gov/migratorybirds/RegulationsandPolicies.html.

All project proponents are responsible for complying with the appropriate regulations protecting birds when planning and developing a project. To meet these conservation obligations, proponents should identify potential or existing project-related impacts to migratory birds and their habitat and develop and implement conservation measures that avoid, minimize, or compensate for these impacts. The Service's Birds of Conservation Concern (2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

For information about Birds of Conservation Concern, go to http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/BCC.html.

Trust Resources List

Migratory birds of concern that may be affected by your project:

There are 13 birds on your Migratory birds of concern list. The Division of Migratory Bird Management is in the process of populating migratory bird data with an estimated completion time of Fall 2014; therefore, the list below may not include all the migratory birds of concern in your project area at this time. While this information is being populated, please contact the Field Office for information about migratory birds in your project area.

Species Name	Bird of Conservation Concern (BCC)	S p e c i e s Profile	Seasonal Occurrence in Project Area
American bittern (Botaurus lentiginosus)	Yes	species info	Wintering
Bald eagle (Haliaeetus leucocephalus)	Yes	species info	Year-round
Black-billed Cuckoo (Coccyzus erythropthalmus)	Yes	species info	Breeding
cerulean warbler (Dendroica cerulea)	Yes	species info	Breeding
Golden-Winged Warbler (Vermivora chrysoptera)	Yes	species info	Breeding
Least Bittern (Ixobrychus exilis)	Yes	species info	Breeding
Marbled Godwit (Limosa fedoa)	Yes	species info	Wintering
Pied-billed Grebe (Podilymbus podiceps)	Yes	species info	Breeding
Purple Sandpiper (Calidris maritima)	Yes	species info	Wintering
Rusty Blackbird (Euphagus carolinus)	Yes	species info	Wintering
Short-billed Dowitcher (Limnodromus griseus)	Yes	species info	Wintering
Wood Thrush (Hylocichla mustelina)	Yes	species info	Breeding
Worm eating Warbler (Helmitheros vermivorum)	Yes	species info	Breeding

Trust Resources List

NWI Wetlands (<u>USFWS National Wetlands Inventory</u>).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers District</u>.

Data Limitations, Exclusions and Precautions

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

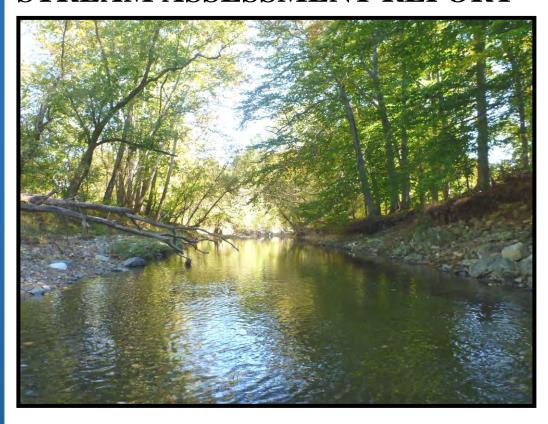
Wetlands or other mapped features may have changed since the date of the imagery and/or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Exclusions - Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Precautions - Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the

Trust Resources List

advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.


The following wetland types intersect your project area in one or more locations:

Wetland Types	NWI Classification Code	Total Acres
Freshwater Forested/Shrub Wetland	PFO1A	1.7732
Freshwater Pond	<u>PUBHx</u>	0.1999
Riverine	R2UBH	61.948

3.2

Stream Assessment Report

STREAM ASSESSMENT REPORT

Bel Air Impoundment Project

Bel Air, Harford County, Maryland

Prepared for:

Prepared by:

STREAM ASSESSMENT REPORT

Maryland American Water Bel Air Impoundment Project Town of Bel Air, Harford County, Maryland

TABLE OF CONTENTS

1.0	Introdu	action	3
2.0	Purpos	se	3
3.0	Study A	Area Description	4
	3.1	Surface Waters	4
	3.2	Previous Stream Studies	4
4.0	Method	ds	7
	4.1	Field Methods and Approach	7
	4.2	Laboratory Methods	8
5.0	Results	S	8
	5.1	Sampling Reach Location and General Description	8
	5.2	Water Quality Parameters	10
	5.3	Macroinvertebrate Data Collection Results	10
6.0	Discus	sion	14
7.0	Contril	butors	15
8.0	Refere	nces	16
		<u>FIGURES</u>	
Figure 1	Site Lo	ocation Map	5
Figure 2	Sample	e Locations	6
		<u>TABLES</u>	
Table 1	Water (Quality Parameters	11
Table 2	Macroi	nvertebrate Data Summary, October 2015	12
Table 3	Summa	ary of Metrics	13

APPENDICES

APPENDIX A	MDNR FISHERIES SERVICE SCIENTIFIC COLLECTION
	PERMIT NO. 201591
APPENDIX B	PHOTOGRAPHIC REFERENCE COLLECTION
APPENDIX C	REACH PHOTOGRAPHS & MAPPING
APPENDIX D	RAPID BIOASSESSMENT DATA FORMS
APPENDIX E	SUMMARY OF CROSS-SECTION ANALYSIS OF INTAKE AND
	FLOW-BY RATES

1.0 Introduction

Maryland American Water Company (MAWC) is proposing to construct an off-stream raw water storage reservoir to serve the Town of Bel Air. The proposed project requires a raw water intake structure on Winters Run and associated pipeline crossings on Winters Run to connect the existing Winters Run Water Treatment Plant (WTP). Construction for this project is proposed in an upland field currently used as agricultural land. The connecting infrastructure between the impoundment and the plant will need to cross Winters Run and its floodplain.

The existing Bel Air water system is supplied primarily from the existing Winters Run Water Treatment Plant (2.0 MGD nominal capacity) that treats water from Winters Run. The Winters Run withdrawal is permitted by the Maryland Department of the Environment (MDE) at 1.4 MGD, annual average. The MAWC water system is also supplemented by water supply wells. Finally, MACW has an agreement with Harford County for a 0.5 MGD supply through an existing metered interconnection.

When stream flow drops below the minimum pass-by flow stipulated by MDE, water cannot be withdrawn by the water treatment plant. During such times historically, the Harford County has allowed the MAWC system to take water in excess of the agreement amount to meet system demands. The County is now facing projected long-term supply shortfalls and has alerted MAWC that they can no longer commit to supplemental supply. As a result, the MAWC identified and evaluated a number of options for a supplemental supply.

In working with Harford County and MDE to evaluate supply alternatives, the County identified a County-owned parcel adjacent to Winters Run, upstream of the Winters Run Water Treatment Plant that could potentially be used for construction of an off-stream storage reservoir. The reservoir would be purchased by MAWC and used to supply the WTP when withdrawal from the stream is restricted or prohibited. The reservoir would be refilled from the stream when flows are sufficient to meet both the supply needs and the refill rates.

The permitted average flow from Winters Run is 1.4 million gallons per day (MGD) with a flow-by requirement of 6.07 MGD. When high flow events occur in Winters Run, MAWC proposes a higher flow-by requirement of 10.62 MGD for withdrawals greater than 1.7 MGD up to a maximum of 8.4 MGD. This will enable the refilling of the off-stream storage reservoir. Retaining the intake's existing withdrawal rate will allow the WTP to continue to readily supply water to the Town of Bel Air, and the additional higher flow-by and withdrawal rate will maintain the normal pool and refill the reservoir supply for when higher flows occur in Winters Run. This scenario allows MAWC to take raw water during higher flow events and will not deprive downstream users and aquatic life.

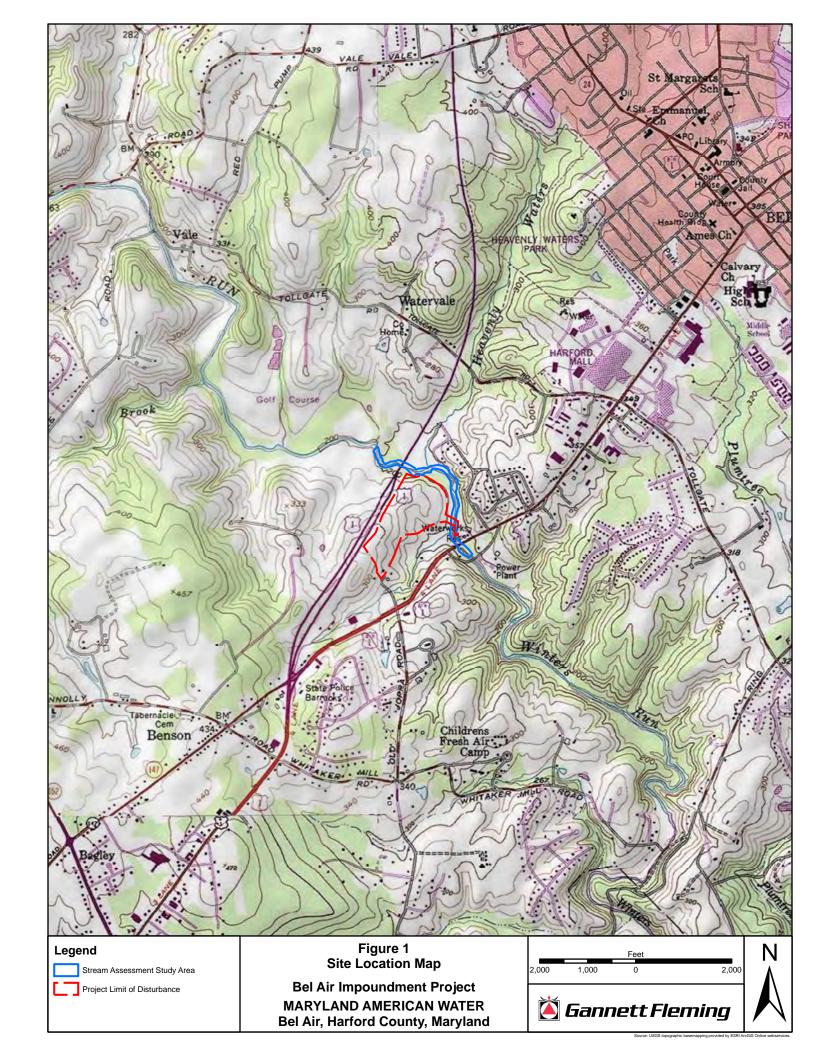
2.0 Purpose

The purpose of this report is to confirm the macroinvertebrate assemblage and water quality of Winters Runs immediately upstream and downstream of the Winters Run Water Treatment Plant.

3

The data collected will be used to support future permitting efforts and assessing impacts to Winters Run.

3.0 Study Area Description


MAWC has proposed to construct an off-stream storage reservoir in an agricultural field southwest of Winters Run between Route 1/Bel Air Bypass and Baltimore Pike. The stream assessment study area encompassed approximately 4,000 linear feet of Winters Run from the Lake Fanny Road Bridge at the downstream limit to approximately 750 linear feet upstream of the U.S. Route 1/Bel Air Bypass Bridge over Winters Run.

3.1 Surface Waters

Winters Run is identified as a perennial stream by the U.S. Geological Survey (USGS) (**Figure 2**). Two perennial tributaries, Heavenly Waters and an unnamed tributary, enter Winters Run within the stream assessment study area. Maryland Department of the Environment (MDE) identified the Designated Use Class for Winters Run and its tributaries as Use Class IV-P: Recreational Trout Waters and Public Water Supply. Maryland classifies surface water bodies according to use classes which describe the suite of specific designated uses or goals for that water body. The Maryland Department of Natural Resources (MDNR) does not stock Winters Run or its tributaries, nor does it list these streams as a wild trout waters.

3.2 Previous Stream Studies

Winters Run (above Atkinson Reservoir) was evaluated in *Assessing the Quality of Streams in and around Maryland's Multi-Component Chesapeake Bay National Estuarine Research Reserve* (2007), a large scale non-tidal tributary assessment study conducted between 2000 and 2006 by MDNR's Maryland Biological Stream Survey (MBSS). The benthic macroinvertebrate assemblages and biological integrity metrics were poor and reflect impairment. However, the fish biological integrity metrics were good and indicated streams conditions were good for fishes. Nitrate concentrations were moderately high within the Winters Run watershed. The poor assemblage of benthic macroinvertebrates observed in Winters Run was attributed to adverse impacts to stream water chemistry and physical habitat quality associated with increased urban development and land conversion to impervious surfaces.

4.0 Methods

4.1 Field Methods and Approach

Gannett Fleming's (GF) team of environmental scientists conducted the field investigations on October 19, 2015. A MDNR Fisheries Service Scientific Collection Permit (Permit No. SCP201591) was issued to Samantha Hockenberry (GF) for the purpose of benthic aquatic macroinvertebrate sample collection for the stream assessment effort. A copy of the scientific collection permit is provided in **Appendix A**.

Winters Run was evaluated and surveyed for benthic macroinvertebrates in accordance with the Rapid Bioassessment Protocols (RBP) for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish (2nd Edition) (Barbour et al, 1999). Five (5) 100-meter (approximately 330-feet) sampling reaches were identified, evaluated, and surveyed for macroinvertebrates within Winters Run within the stream assessment study area. The Rapid Bioassessment Physical Characterization/Water Quality and Habitat Assessment Field Data Sheets for low gradient streams were completed while at sampling reach locations (Barbour et al, 1999). Water quality measurements were taken using a Horiba U-22 multiparameter water quality meter.

Macroinvertebrates were collected using a D-frame dip net and the kick-netting method for D-frame dip nets as described in the RBP for Single and Multi-Habitat Approaches for macroinvertebrate collection. For each sampling reach, the collections from all 10 kicks were composited into one sample and stored in 95% denatured ethanol. *Rapid Bioassessment Benthic Macroinvertebrate Field Data Sheet* was completed in the field following completion of macroinvertebrate collection (Barbour *et al*, 1999). For quality control, a duplicate macroinvertebrate sample was collected at a randomly selected sampling reach to represent 20% of the total sampling effort within the Winters Run stream assessment study area.

To avoid contamination from other watersheds, equipment used for stream assessment fieldwork were thoroughly cleaned prior to use in Winters Run. The bottleware were new and had not been previously used in another watershed. The D-frame dip net and sieve were thoroughly scrubbed with 95% denatured ethanol to kill and dislodge remnant organisms from previous use. Waders were cleaned and dry prior to fieldwork, and all waders used had rubber soles. Between sampling reaches the D-frame net and sieve were rinsed with 95% denatured ethanol to kill and dislodge remaining organisms. Boot soles were inspected for trapped organisms to reduced cross-contamination between sampling reaches.

4.2 Laboratory Methods

The full sample for each reach was picked in its entirety for all macroinvertebrates. Picking efforts were quality control reviewed by re-picking/searching half of each sample's total volume for missed individuals. If the efficiency rate of the picking effort was greater than 90%, then sample passed quality control review for picking.

For each reach sample, macroinvertebrates were sorted to family and identified to the lowest practical taxonomic level, which was genus for most specimen. A photographic reference collection was assembled exhibiting all taxa identified for quality control identification review. The photographic reference collection, depicting a representative specimen from each taxon, was assembled and is provided as **Appendix B**.

Macroinvertebrates were identified and reviewed using a Wolfe DigiVu SZM 3.0 Stereomicroscope with up to 40x magnification. Dichotomous keys used for macroinvertebrate identification included:

- An Introduction to the Aquatic Insects of North America (Merritt et al, 2006);
- Nymphs of North American Stonefly Genera (Plecoptera) (Stewart et al, 1988);
- Larvae of the North American Caddisfly Genera (Trichoptera) (Wiggins, 1977);
- Guide to Aquatic Invertebrates of the Upper Midwest (Bouchard et al, 2004); and
- Freshwater Macroinvertebrates of Northeastern North America (Peckarsky, 1990).

The picking and identification efforts were conducted by GF's environmental scientist with a Society of Freshwater Science Taxonomic Certification to Family Level for Aquatic Insects and academic training in the field of aquatic entomology and taxonomy.

5.0 Results

5.1 Sampling Reach Location and General Description

Sampling Reach: WR- 001

Coordinates: Lat. 39° 30′ 55.68″ N; Long. 76° 22′ 7.99″ W

Description: WR-001 was located between the Bel Air Road Bridge over Winters Run and the Lake Fanny Road Bridge over Winters Run. This sampling reach was located at the downstream limits of the stream assessment study area and is approximately 200 linear feet downstream of the Winters Run Water Treatment Plant Intake. The stream width within this sampling reach was approximately 110 feet and varied in depth from 0 to 36+ inches at the time of the field survey.

Photographs: See Appendix C

Canopy Cover: Trees and shrubs were observed along the top of banks. The stream within this reach was under partly open canopy consisting of sycamore, maples, and hickories.

RBP Habitat Assessment: Score 90 (Appendix D)

Sampling Reach: WR- 002

Coordinates: Lat. 39° 31 '0.56" N; Long. 76° 22' 9.22" W

Description: WR-002 was located immediately upstream of the Winters Run Water Treatment Plant intake. This sampling reach was located approximately 150 linear feet upstream of the Bel Air Road Bridge over Winters Run. The stream width within this sampling reach was approximately 65 feet and varied in depth from 18 to 48+ inches at the time of the field survey. The quality control duplicate sample was collected within this reach.

Photographs: See Appendix C

Canopy Cover: Trees and shrubs were observed along the top of banks. This sampling reach was under partly open canopy consisting of black walnut, sycamore, and box elder.

RBP Habitat Assessment: Score 99 (Appendix D)

Sampling Reach: WR-003

Coordinates: Lat. 39° 31′ 8.91″ N; Long. 76° 22′ 9.69″ W

Description: WR-003 was located approximately 1,000 linear feet upstream of the Bel Air Road Bridge over Winters Run. The stream width within this sampling reach was approximately 85 feet and varied in depth from 0 to 36+ inches at the time of the field survey.

Photographs: See Appendix C

Canopy Cover: Trees and shrubs were observed along the top of banks. This sampling reach was under partly closed canopy consisting of sycamore, black cherry, black locust, and spicebush.

RBP Habitat Assessment: Score 97 (Appendix D)

Sampling Reach: WR-004

Coordinates: Lat. 39° 31′ 10.83″ N; Long. 76° 22′ 19.24″ W

Description: WR-004 was located approximately 350 linear feet downstream of the U.S. Route 1 Bridge over Winters Run. The stream width within this sampling reach was approximately 65 feet and varied in depth from 0 to 48+ inches at the time of the field survey.

Photographs: See Appendix C

Canopy Cover: Trees and shrubs were observed along the top of banks. This sampling reach was under partly closed canopy consisting of American beech and red maple.

RBP Habitat Assessment: Score 107 (Appendix D)

Sampling Reach: WR- 005

Coordinates: Lat. 39° 31′ 13.59″ N; Long. 76° 22′ 29.12″ W

Description: WR-005 was located approximately 400 linear feet upstream of the U.S. Route 1 Bridge over Winters Run. The stream width within this sampling reach was approximately 60 feet and varied in depth from 0 to 36+ inches at the time of the field survey.

Photographs: See Appendix C

Canopy Cover: Trees and shrubs were observed along the top of banks. This sampling reach was under partly open canopy consisting of American sycamore, green and white ashes, and multiflora rose.

RBP Habitat Assessment: Score 105(Appendix D)

5.2 Water Quality Parameters

Several water quality parameters were measured in the field during the sampling events. Temperature, pH, conductivity, turbidity, dissolved oxygen (DO), and total dissolved solids (TDS) were recorded during the sampling event and the results are summarized in **Table 1**.

5.3 Macroinvertebrate Data Collection Results

Macroinvertebrates were sampled at each sampling reach on October 19, 2015. **Tables 2** and **3** present the macroinvertebrate data for October 2015.

November 2015

Table 1
Water Quality Parameters Summary Table

WATER QUALITY PARAMETERS TABLE					
Water Quality Meter Used: Horiba U-22	WR-001	WR-002	WR-003	WR-004	WR-005
Date Collected	10/19/2015	10/19/2015	10/19/2015	10/19/2015	10/19/2015
Time Collected	0930hrs	1055hrs	1140hrs	1240hrs	1325hrs
Temperature (°C)	6.70	7.34	8.16	8.83	9.56
pH (Standard Units)	5.60	5.71	5.64	5.90	5.92
Conductivity (mS/cm)	0.33	0.32	0.32	0.29	0.29
Turbidity (NTUs)	6.00	7.70	3.20	2.50	2.60
Dissolved Oxygen (DO) (mg/L)	13.21	14.38	14.16	14.17	13.90
Total Dissolved Solids (TDS) (mg/L)	210	204	204	190	190

Table 2 Macroinvertebrate Data, October 2015

Order	Family	Genus	Hilsenhoff	Functional Feeding Group	WR-001	WR-002	WR-003	WR-004	WR-005	WR-002 DUP
	Baetidae	Acentrella sp.	4	SC	2	-	1	-	1	-
EPHEMEROPTERA	Baetidae	Family (recently molted)	6	CG	18	-	2	4	2	-
EPHEMIEROPIERA	Hepatgeniidae	Maccaffertium sp.	4	SC	-	-	-	8	-	-
	Isonychidae	Isonychia	3	CG	2	-	-	3	-	-
		Cheumatopsyche sp.	6	FC	37	-	15	39	15	-
TDICHODTED A	Hydropsychidae	Ceratopsyche sp.	5	FC	71	-	16	49	6	-
TRICHOPTERA Philopotamidae	Family (immature)	5	FC	18	-	6	52	12	-	
	Chimarra sp.	4	FC	5	-	3	18	2	-	
COLEODTED A	COLEOPTERA Elmidae Psephenidae	Stenelmis sp.	5	CG	2	-	1	-	1	-
COLEOPTERA		Psephenus sp.	4	SC	1	-	-	-	-	-
	Chironomidae	Family	6	CG	44	1	13	62	28	2
	Simuliidae	Family	6	FC	7	-	1	1	4	-
DIPTERA	T:1: 1	Tipula sp.	4	SH	2	-	-	-	-	-
	Tipulidae	Antocha sp.	3	CG	3	-	-	8	1	-
Empididae	Hermerodromia sp.	6	PR	-	-	1	-	-	-	
AMPHIPODA	Crangonyctidae	Family	4	CG	1	-	-	2	-	-
OLIGOCHAETA	-	-	10	CG	8	-	-	-	-	-
BIVALVIA (Class)	Veneridae	Family	-	-	-	-	1	-	-	-

Functional Feeding Groups							
CG	Collector-Gatherer						
FC	Filter-Collector						
PR	Predator						
SC	*						
SH	Shredder						

Total Number of Individuals	221	1	59	246	72	2
Total Number of Taxa	15	1	10	11	10	1

Dominant Taxon	Hydrospychidae Ceratopsyche sp.	Chironomidae	Chironomidae	Chironomidae	Chironomidae	Chironomidae
Percent of Sample	32.1%	100.0%	27.1%	25.2%	38.9%	100.0%

Table 3
Summary of Metrics

Metrics and IBI Score Summary	Stations							
Metrics:	WR-001	WR-002	WR-003	WR-004	WR-005	WR-002 DUP		
EPT taxa richness	3	0	2	2	2	0		
Total taxa richness	15	1	10	11	10	1		
Shannon Diversity Index	1.99	0.00	1.87	1.89	1.74	0.00		
Hilsenhoff Biotic Index	5.57	-	5.47	5.23	5.61	-		
Percent Sensitive Individuals	2.26	0.00	0.00	4.47	1.39	0.00		

6.0 Discussion

The benthic macroinvertebrate communities present in Winters Run reflect poor stream condition and physical impairment likely due to increased urban development within the watershed. Chironomidae (non-biting midges) and Hydropsychidae (net-spinner caddisflies) were the dominant taxa collected in Winters Run. These taxa are widespread and tolerant of a wide water quality and physical condition range. The overall low abundance of individuals collected is attributed to the deep sandy substrate within the stream channel that is difficult for benthic macroinvertebrates to colonize and persist. The limited presence of pollution-intolerant macroinvertebrates, such as Maccaffertium sp. (flathead mayflies), Isonychia sp. (brush-legged mayflies), and Antocha sp. (crane flies) suggest that the water quality is good and able to support aquatic life. However, the predominantly sandy substrate limits the colonization of these particular taxa. The water quality parameter measurements indicate the stream water quality is good with sufficient dissolved oxygen to support fish communities. During the field investigation, several fish species were observed which included blacknose dace (Rhinichthys atratulus), creek chub (Semotilus atromaculatus), and Blue Ridge sculpin (Cottus caeruleomentum).

Based on this stream assessment conducted under the existing annual average 1.4 MGD withdrawal rate and 6.07 MGD flow-by requirement, it is expected that additional surface water withdrawals exceeding the maximum daily withdrawal rate of 1.7 MGD up to a maximum withdrawal rate of 8.4 MGD should not have a detrimental impact on Winters Run with a higher flow-by requirement up to 10.62 MGD. When high flow events occur in Winters Run, MAWC proposes a higher flow-by requirement of 10.62 MGD for withdrawals greater than 1.4 MGD up to a maximum of 8.4 MGD. This will enable the refilling of the off-stream storage reservoir. Retaining the intake's existing withdrawal rate will allow the WTP to continue to readily supply water to the Town of Bel Air, and the additional higher flow-by and withdrawal rate will maintain the normal pool and refill the reservoir supply for when higher flows occur in Winters Run. Based on this stream assessment, this scenario allows MAWC to withdrawal additional raw water during higher flow events and will not deprive downstream users and aquatic life. A summary of cross-section analysis of current and proposed intake and flow-by rates are provided in **Appendix E**.

November 2015

7.0 Contributors

David H. Graff, Senior Environmental Scientist, QA/QC

Professional Experience: 17 years

Education: B.S., Environmental Studies M.A.Ed., Environmental Studies

- 38 Hour U.S. Army Corps of Engineers Wetland Delineator Certification Training
- Habitat Evaluation Procedures (HEP) Certified
- Professional Wetland Scientist, (PWS) No. 001385, Society of Wetland Scientists
- Certified Senior Ecologist (CSE), Ecological Society of America
- Certified Wildlife Biologist (CWB), The Wildlife Society

Autumn M. Thomas, Senior Environmental Scientist

Professional Experience: 16 years

Education: B.S., Environmental Science and Natural Resources Biology

- Rutgers Wetland Delineation Certificate Series
- Region Supplement to the Corps of Engineers Wetland Delineation Manual Update Workshop
- USFWS & PFBC Recognized, Qualified Bog Turtle Surveyor

Samantha R. Hockenberry, Environmental Scientist

Professional Experience: 2 year Education: B.S. Biology M.S. Biology

- 36 Hour Swamp School Wetland Delineation & Regional Supplement Training
- Society of Freshwater Science Taxonomic Certification to Family Level for Aquatic Insects (2013 – 2018)
- Certified Associate Ecologist (CAE), Ecological Society of America
- MDNR Fisheries Service Scientific Collection Permit No. 201591

November 2015

8.0 References

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Bouchard, R. W., L. C. Ferrington, and M. L. Karius. *Guide to Aquatic Invertebrates of the Upper Midwest: Identification Manual for Students, Citizen Monitors, and Aquatic Resource Professionals.* St. Paul, MN: U of Minnesota, 2004. Print.
- Marshall, S.A. *Insects: Their Natural History and Diversity*. Buffalo, NY: Firefly (U.S.), 2006. Print.
- Merritt, R.W., K.W. Cummins, and M.B. Berg. *An Introduction to the Aquatic Insects of North America*. 4th ed. Dubuque, IA: Kendall Hunt, 2006. Print.
- Peckarsky, B.L. Freshwater Macroinvertebrates of Northeastern North America. Ithaca: Comstock Pub. Associates, 1990. Print.
- Stranko, S.A., A.J. Becker, M. O'Connor, R.M. Gauza, J.V. Kilian, D.M. Boward, A. Schenk. 2007. Assessing the quality of streams in the and around Maryland's multi-component Chesapeake Bay National Estuarine Research Reserve. Maryland Department of Natural Resources, Resource Assessment Service, Monitoring and Non-Tidal Assessment Division; Annapolis, MD.
- Stewart, K.W., B.P. Stark, and J.A. Stanger. *Nymphs of North American Stonefly Genera (Plecoptera)*. College Park, MD: Entomological Society of America, 1988. Print.
- Voshell, J.R., and A.B. Wright. *A Guide to Common Freshwater Invertebrates of North America*. Blacksburg, VA: McDonald & Woodward Pub., 2002. Print.
- Wiggins, G.B. *Larvae of the North American Caddisfly Genera: (trichoptera)*. Toronto: U of Toronto, 1977. Print.

APPENDIX A

MDNR FISHERIES SERVICE SCIENTIFIC COLLECTION PERMIT NO. 201591

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor Mark J. Belton, Secretary Mark L. Hoffman, Acting Deputy Secretary

Fisheries Service

October 14, 2015

Samantha Hockenberry Gannett Fleming, Inc. 207 Senate Avenue Camp Hill, PA 17011

Dear Samantha:

Enclosed is your 2015 Scientific Collection Permit. Your permit number is SCP201591 and expires December 31, 2015. Collectors must possess the permit while sampling. This permit authorizes you to sample and collect fish at certain locations, it does not authorize you to trespass. You must obtain permission prior to sampling on Federal, State, County and private property. A copy of your permit has been forwarded to the Natural Resources Police.

A report of all activity conducted under SCP201591 is due by January 31, 2016. For each date of activity the report should include the following types of information: date, location sampled, number caught by species and what happened to the catch.

Please contact me by e-mail at <u>richard.bohn@maryland.gov</u>, by phone at (410) 260-8317 or by fax at (410) 260-8279 if you have any questions.

Sincerely,

Richard Bohn

Permit Coordinator

Richard Bolin

Enclosure

MARYLAND DEPARTMENT OF NATURAL RESOURCES FISHERIES SERVICE SCIENTIFIC COLLECTION PERMIT

I. PERMITTEE	2. PERMIT NUMBER	SCP201591
GANNETT FLEMING, INC. 207 SENATE AVENUE CAMP HILL, PA 17011	3. EFFECTIVE 10-14-2015	4. EXPIRES 12-31-2015
		763-7211 x2144 (WORK)

6. NAME AND TITLE OF PRINCIPAL OFFICER SAMANTHA R. HOCKENBERRY, ENVIRONMENTAL SCIENTIST

7. CONDITIONS AND AUTHORIZATIONS:

A. AUTHORITY FOR THIS PERMIT IS UNDER THE ANNOTATED CODE OF MARYLAND §4-212. THE CONDITIONS IN STATE LAW AND REGULATIONS ARE HEREBY MADE A PART OF THIS PERMIT. ALL ACTIVITIES AUTHORIZED HEREIN MUST BE CARRIED OUT IN ACCORD WITH AND FOR THE PURPOSES DESCRIBED IN THE APPLICATION SUBMITTED. CONTINUED VALIDITY OF THIS PERMIT IS SUBJECT TO COMPLETE AND TIMELY COMPLIANCE WITH ALL APPLICABLE CONDITIONS, INCLUDING THE FILING OF ALL REQUIRED INFORMATION AND REPORTS, AND CONDITIONED UPON STRICT OBSERVANCE OF ALL APPLICABLE FOREIGN, FEDERAL, LOCAL OR OTHER STATE LAWS.

- B, YOU MUST REPORT THE COLLECTION OF ANY MARKED FISH TO THE APPROPRIATE AGENCY. MARKINGS MAY INCLUDE FIN CLIPS, STREAMER OR FLOY TAGS, ETC.
- C. YOU MUST CONTACT THE DEPARTMENT OF NATURAL RESOURCES POLICE AT 410-260-8940 TO LET THEM KNOW WHEN YOU WILL BE OPERATING IN MARYLAND WATERS. THIS ELIMINATES UNNECESSARY POLICE INVESTIGATIONS.
- D. THIS PERMIT DOES NOT AUTHORIZE THE COLLECTION, SALVAGE, POSSESSION OR TRANSPORTATION OF ANY SPECIES CLASSIFIED AS PROHIBITED, THREATENED OR ENDANGERED AT THE STATE OR FEDERAL LEVEL (EXCEPT AS LISTED BELOW).
- E. STUDY DESCRIPTION: STREAM HEALTH BASELINE ASSESSMENT OF WINTERS RUN IN HARFORD COUNTY FOR A PROPOSED RAW WATER INTAKE AND STORAGE RESERVOIR AND ASSOCIATED PIPELINES FOR THE TOWN OF BEL AIR; WATER QUALITY AND MACROINVERTEBRATE COLLECTIONS USING KICK NETS AND DIP NETS.
- F. ALL FISH AND INVERTEBRATES NOT RETAINED FOR IDENTIFICATION MUST BE RETURNED TO THE STREAM LIVE,
- G. RESTRICTIONS: COLLECTORS MUST OBTAIN LANDOWNER OR MANAGER PERMISSION BEFORE SAMPLING. TO PREVENT THE INTRODUCTION OR SPREAD OF INVASIVE SPECIES OR AQUATIC DISEASES, COLLECTORS MUST CLEAN ALL WADERS AND COLLECTION GEAR USING EFFECTIVE DECONTAMINATION PROTOCOLS BEFORE AND AFTER SAMPLING IN MARYLAND.
- H. COLLECTION OF MACROINVERTEBRATES USING DIP NETS AND KICK NETS IS PERMITTED ACCORDING TO SECTIONS 7A-G (SEE ABOVE) IN WINTERS RUN IN HARFORD COUNTY FOR THE PURPOSES OF ESTABLISHING A BASELINE STREAM ASSESSMENT.
- I. SPECIES COLLECTED AND/OR HELD UNDER THIS PERMIT ARE NOT PERMITTED FOR PERSONAL CONSUMPTION OR SALE.

8. LIST OF COLLECTORS	S IN ADDITION TO TH	E PRINCIPAL OFFICEI	R (at least one collector on site	e must be carrying a copy	of this permit):
DAVID GRAFF	STEVEN SMITH	COREY MYERS	KRISTIN CIVITELLA	STEVEN WITTIG	AUTUMN THOMAS
9. REPORTING REQUIRE	MENTS: SUM	MARY REPORT OF PE	RMIT ACTIVITY DUE BY J	ANUARY 31, 2016	
ISSUED BY Ries	hard Bo	hu		PERMIT COORDINA 410-260-8317	EXPIRES 12-31-2015

APPENDIX B

PHOTOGRAPHIC REFERENCE COLLECTION

Identification Summary

Order

Ephemeroptera

Family

Baetidae

Genus

Acentrella

Common Name

Small Minnow Mayflies

Life Stage

Larvae

Hilsenhof Tolerance Value

4

Functional Feeding Group

Scraper

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-005

Dorsal View

Ventral View

Penny to Show Scale

Identification Summary

Order

Ephemeroptera

Family

Baetidae

Genus

Family

Common Name

Small Minnow Mayflies

Life Stage

Larvae

Hilsenhof Tolerance Value

6

Functional Feeding Group

Collector-Gatherer

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Ephemeroptera

Family

Hepatgeniidae

Genus

Maccaffertium

Common Name

Flathead Mayflies

Life Stage

Larvae

Hilsenhof Tolerance Value

4

Functional Feeding Group

Scraper

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Ephemeroptera

Family

Isonychidae

Genus

Isonychia

Common Name

Brush-Legged Mayflies

Life Stage

Larvae

Hilsenhof Tolerance Value

3

Functional Feeding Group

Collector-Gatherer

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-004

Ventral View

Penny to Show Scale

Identification Summary

Order

Trichoptera

Family

Hydropsychidae

Genus

Cheumatopsyche

Common Name

Common Net-Spinner Caddisflies

Life Stage

Larvae

Hilsenhof Tolerance Value

6

Functional Feeding Group

Filter-Collector

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Trichoptera

Family

Hydropsychidae

Genus

Ceratopsyche

Common Name

Common Net-Spinner Caddisflies

Life Stage

Larvae

Hilsenhof Tolerance Value

5

Functional Feeding Group

Filter-Collector

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Trichoptera

Family

Hydropsychidae

Genus

Family (immature)

Common Name

Common Net-Spinner Caddisflies

Life Stage

Larvae

Hilsenhof Tolerance Value

5

Functional Feeding Group

Filter-Collector

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Trichoptera

Family

Philopotamidae

Genus

Chimarra

Common Name

Finger-Net Caddisflies

Life Stage

Larvae

Hilsenhof Tolerance Value

4

Functional Feeding Group

Filter-Collector

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Coleoptera

Family

Elmidae

Genus

Stenelmis

Common Name

Riffle Beetles

Life Stage

Larvae

Hilsenhof Tolerance Value

5

Functional Feeding Group

Collector-Gatherer

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Coleoptera

Family

Psephenidae

Genus

Psephenus

Common Name

Water Pennies

Life Stage

Larvae

Hilsenhof Tolerance Value

4

Functional Feeding Group

Scraper

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001

Ventral View

Penny to Show Scale

Identification Summary

Order

Diptera

Family

Chironomidae

Genus

Family

Common Name

Non-Biting Midges

Life Stage

Larvae

Hilsenhof Tolerance Value

6

Functional Feeding Group

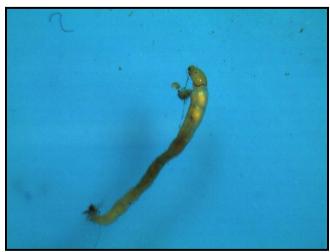
Collector-Gatherer

Collection Summary

Stream

Winters Run

Collection Method & Equipment


Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-002, WR-003, WR-004, WR-005, WR-002 DUP

Ventral View

Penny to Show Scale

Identification Summary

Order

Diptera

Family

Simuliidae

Genus

Family

Common Name

Black Flies, Buffalo Gnats

Life Stage

Larvae

Hilsenhof Tolerance Value

6

Functional Feeding Group

Filter-Collector

Collection Summary

Stream

Winters Run

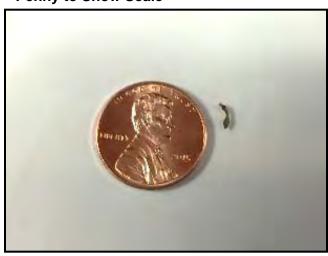
Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches


WR-001, WR-003, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Diptera

Family

Tipulidae

Genus

Tipula

Common Name

Crane Flies

Life Stage

Larvae

Hilsenhof Tolerance Value

4

Functional Feeding Group

Shredder

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date


October 19, 2015

Found in Sampling Reaches

WR-001

Ventral View

Penny to Show Scale

Identification Summary

Order

Diptera

Family

Tipulidae

Genus

Antocha

Common Name

Crane Flies

Life Stage

Larvae

Hilsenhof Tolerance Value

3

Functional Feeding Group

Collector-Gatherer

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-004, WR-005

Ventral View

Penny to Show Scale

Identification Summary

Order

Diptera

Family

Empididae

Genus

Hermerodromia

Common Name

Dance Flies

Life Stage

Larvae

Hilsenhof Tolerance Value

6

Functional Feeding Group

Predator

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-003

Ventral View

Penny to Show Scale

Identification Summary

Order

Amphipoda

Family

Order

Genus

Order

Common Name

Scuds & Side-Swimmers

Life Stage

Adult

Hilsenhof Tolerance Value

4

Functional Feeding Group

Collector-Gatherer

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003

Right Lateral View

Left Lateral View

Penny to Show Scale

Identification Summary

Class

Bivalvia

Family

Veneridae

Genus

Family

Common Name

Freshwater Clams & Mussels

Life Stage

Adult

Hilsenhof Tolerance Value

--

Functional Feeding Group

--

Collection Summary

Stream

Winters Run

Collection Method & Equipment


Kick-Netting with D-Frame Net

Collection Date

October 19, 2015

Found in Sampling Reaches

WR-001, WR-003

Ventral View

Penny to Show Scale

Identification Summary

Order

Oligochaeta

Family

--

Genus

--

Common Name

Aquatic Worms

Life Stage

Adult

Hilsenhof Tolerance Value

--

Functional Feeding Group

--

Collection Summary

Stream

Winters Run

Collection Method & Equipment

Kick-Netting with D-Frame Net

Collection Date


October 19, 2015

Found in Sampling Reaches

WR-001

Ventral View

Penny to Show Scale

APPENDIX C

REACH PHOTOGRAPHS & MAPPING

Photo 1 (10-19-2015)

View upstream from Sampling Reach WR-001. The bridge carrying Bel Air Rd over Winters Run is shown, as well as the water treatment plant dam upstream of the bridge.

Photo 2 (10-19-2015)

View of Sampling Reach WR-001 looking downstream from the Bel Air Rd bridge over Winters Run. The bridge carrying Fanny Lake Rd over Winters Run is shown in the distance.

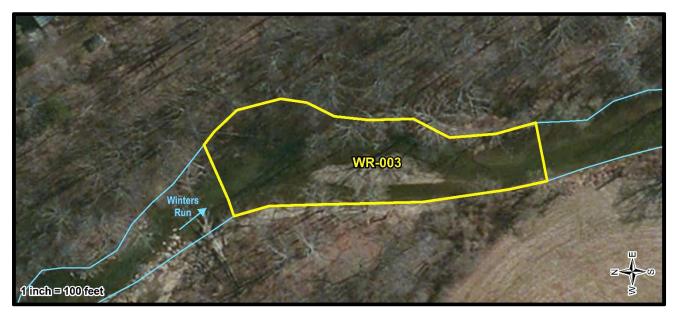


Photo 3 (10-19-2015)View of Sampling Reach WR-002 looking upstream.

Photo 4 (10-19-2015) View of Sampling Reach WR-002 looking downstream.

Photo 5 (10-19-2015)View of Sampling Reach WR-003 looking upstream.

Photo 6 (10-19-2015)View of Sampling Reach WR-003 looking downstream.

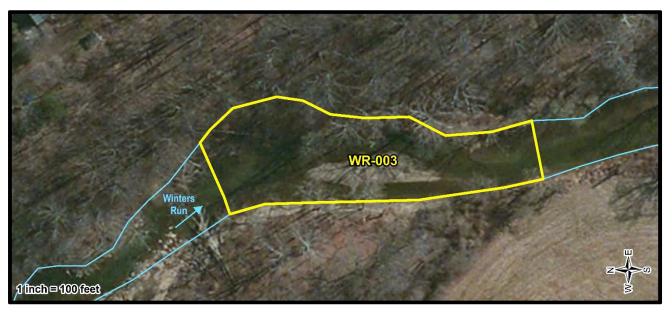


Photo 7 (10-19-2015)
View of Sampling Reach WR-004
looking upstream. The bridge
carrying U.S. Route 1 over Winters
Run is shown in the distance.

Photo 8 (10-19-2015)View of Sampling Reach WR-004 looking downstream.

Photo 7 (10-19-2015)View of Sampling Reach WR-005 looking upstream.

Photo 8 (10-19-2015) View of Sampling Reach WR-005 looking downstream. The park's pedestrian bridge over Winters Run is shown.

APPENDIX D

RAPID BIOASSESSMENT DATA FORMS

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME Winters	LOCATION Bel Air, Harford County, Maryland			
STATION # WR-001 R	IVERMILE	STREAM CLAS	SS Perennial	
LAT 39.515466°N LO	ONG	RIVER BASIN	Bush River	
STORET#		AGENCY MDN	IR	Client: Maryland American Water Company
INVESTIGATORS S. Hoc	kenberry, A. Thomas			
FORM COMPLETED BY	Thomas/Hockenberry	DATE 10/19/15 TIME 09:30	✓AM□PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey
-				
WEATHER CONDITIONS	rain (showers %c	(heavy rain) (steady rain) s (intermittent) loud cover	hours	Has there been a heavy rain in the last 7 days? ☐Yes ☐No Air Temperature 10 ° C Other Cool and breezy
	✓ cle	ear/sunny	✓	
SITE LOCATION/MAP	Draw a map of the sit See Appendix C		_	ed (or attach a photograph) Mapping
STREAM CHARACTERIZATION	Stream Subsystem Perennial Inte	ermittent Tida Spring-fece Mixture o Other	ıl	Stream Type ☐ Coldwater ☐ Warmwater Catchment Area — km²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom ✓ Fores ☐ Field ☐ Agric ✓ Resid	Pasture Industr	ercial ial	Local Watershed NPS ☑ No evidence □ Som □ Obvious sources □ Local Watershed Eros □ None ☑ Moderate	e potential sources
RIPARIA VEGETA (18 meter	TION		e the dominant type and S nt species present Sycan		minant species present He	erbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) 0.0033 ted Stream Depth 0 to 1:	m m² km² +m	Canopy Cover ☐ Partly open ☐ Partl High Water Mark 2 Proportion of Reach R Morphology Types ☐ Riffle 10	m epresented by Stream Run%
LARGE V DEBRIS	VOODY	LWD Density	of LWD r	m²/km² (LWD/ 1	reach area)	
AQUATIC VEGETATION Indicate the dominant type and r Rooted emergent Rooted emergent Atta dominant species present Portion of the reach with aquatic			ooted submerge ttached Algae	nt Rooted floating	□Free floating	
WATER (QUALITY	Temperature 6.7 C Specific Conductance 0.325 mS/CM Dissolved Oxygen 13.21 mg/L pH 5.6 Turbidity 6.0 NTUs WQ Instrument Used Horiba U-22		☐Fishy Water Surface Oils	Chemical Other Globs Flecks Ired)	
SUBSTRATE		Odors Normal Sewage Petroleum Chemical Anaerobic None Oils Absent Slight Moderate Profuse		Looking at stones which	Other	
INC		STRATE dd up to 1	COMPONENTS (100%)		ORGANIC SUBSTRATE C (does not necessarily add	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)	
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2		50 	Muck-Mud	black, very fine organic (FPOM)	
Sand	0.06-2mm (gritt	y)	50	Marl	grey, shell fragments	
Silt	0.004-0.06 mm			1		
Clay	< 0.004 mm (sli	ck)		1		

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME Winters Run	LOCATION Bel Air, Harford County, Maryland		
STATION #_WR-001 RIVERMILE	STREAM CLASS Perennial		
LAT <u>39.515466°N</u> LONG <u>76.368886°W</u>	RIVER BASIN Bush River		
STORET #	AGENCY MDNR	Client: Maryland American Water Company	
INVESTIGATORS S. Hockenberry, A. Thomas			
FORM COMPLETED BY Thomas/Hockenberry	DATE 10/19/15 TIME 09:30	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	

	_ Habitat	Condition Category						
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
each	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.			
nate(score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.			
mete	score 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	score 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat	Condition Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.		
san	score 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
eva	SCORE 2 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to be	SCORE $\frac{5}{(RB)}$	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters to	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 5 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 95

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME Winters Run		LOCATION Bel Air, Harford County, Maryland				
STATION #_WR-001		STREAM CLASS Perennial				
LAT _39.515466°N		RIVER BASIN Bush River				
STORET#		AGENCY MDNR	Client: Maryland Ame	rican Water Company		
INVESTIGATORS S	. Hockenberry, A. Thomas		LOT NUMBER	, -		
FORM COMPLETED		DATE 10/19/15 TIME 09:30	REASON FOR SURVEY S	Stream Assessment & Macroinvertebrate Survey		
HABITAT TYPES		f each habitat type present nags%	Banks%	%		
SAMPLE COLLECTION		□ kick-net □ Other □ llected? □ wading □ f bs/kicks taken in each habitat ty nags □ Vegetated B	from bank ☐ from bo ype. Banks ☐ Sand 10	at		
GENERAL COMMENTS						
		nt/Not Observed, 1 = Rare,	2 = Common, 3= Abun	dant, 4 =		
Periphyton	<u> </u>	2 3 4 Slimes		① 1 2 3 4		
Filamentous Algae	① 1 2	2 3 4 Macroin	vertebrates	0 1 2 3 4		
Macrophytes		2 3 4 Fish		0 1 2 3 4		
Indicate estimated	FIELD OBSERVATIONS OF MACROBENTHOS Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)					
Porifera		soptera 0 1 2	3 4 Chironomidae	0 1 2 3 4		
Hydrozoa		optera 0 1 2	3 4 Ephemeroptera	0 1 2 3 4		
Platyhelminthes	_	niptera 0 1 2	3 4 Trichoptera	0 1 2 3 4		
Turbellaria		eoptera $0 \bigcirc 1 \bigcirc 2$	3 4 Other	0 1 2 3 4		
Hirudinea		idoptera 0 1 2	3 4			
Oligochaeta	0 1 2 3 4 Siali 0 1 2 3 4 Cory		3 4 3 4			
Isopoda		-				
Amphipoda		_	3 4			
Decapoda Gastropoda		pididae 0 1 2	3 4 3 4			
Rivalvia		inidae 0 1 2	3 4 3 4			

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME Winters Run		LOCATION Bel Air, Harford County, Maryland		
STATION #_WR-002 R	IVERMILE	STREAM CLAS	SS Perennial	
LAT <u>39.516823°N</u> LO	ONG _76.369228°W	RIVER BASIN	Bush River	
STORET #		AGENCY MDN	IR	Client: Maryland American Water Company
INVESTIGATORS S. Hoc	kenberry, A. Thomas			
FORM COMPLETED BY	Thomas/Hockenberry	DATE 10/19/15 TIME 10:55	PMPM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey
	l 			
WEATHER CONDITIONS	Now —		Past 24 hours	Has there been a heavy rain in the last 7 days? ☑ No
	rain ((heavy rain) steady rain)		Air Temperature 10 °C
	showers	s (intermittent) loud cover	□ □%	Other Cool and breezy
		ear/sunny	$\overline{\square}$	
SITE LOCATION/MAP	Draw a map of the sit	e and indicate the	e areas sampl	led (or attach a photograph)
	See Appendix C	- Reach Pho	tographs	& Mapping
STREAM CHARACTERIZATION	Stream Subsystem ☑ Perennial ☐ Inte	ermittent Tida	al	Stream Type ☑ Coldwater ☐ Warmwater
	Stream Origin			Catchment Areakm ²
	Glacial Non-glacial montane Swamp and bog	Spring-fed Mixture o Other	l f origins	
	Swamp and bog	✓ Other		

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		✓ Fores	Pasture Industria	rcial al	Local Watershed NPS No evidence ☑Som Obvious sources Local Watershed Erosi None ☑Moderate	e potential sources	
RIPARIA VEGETA (18 meter	TION		e the dominant type and Sh		minant species present He		
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) 0.0020 ted Stream Depth 010 1.5 Velocity <0.3 m	mm²km² +m	Proportion of Reach R Morphology Types	<u>.</u> m	
LARGE V DEBRIS	VOODY	LWD Density	120 m ² of LWD 6,000 m	1 ² /km ² (LWD/ 1	reach area)		
AQUATIC VEGETATION Indicate the dominant type and record the dominant species present Rooted emergent Rooted submergent Rooted floating Free floating dominant species present Attached Algae dominant species present Portion of the reach with aquatic vegetation 9 %				☐Free floating			
Spec Disso pH <u>s</u> Turb			Temperature 7.34 0 C Specific Conductance 0.317 mS/CM Dissolved Oxygen 14.38 mg/L pH 5.71 Turbidity 7.7 NTUs WQ Instrument Used Horiba U-22		☐ Petroleum ☐ Fishy ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	✓ Normal/None ✓ Sewage ☐ Petroleum ☐ Chemical ☐ Fishy ☐ Other Water Surface Oils ☐ Slick ☐ Sheen ☐ Globs ☐ Flecks	
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils		Petroleum None	Looking at stones whic are the undersides blace	Otherh are not deeply embedded,	
INC		STRATE dd up to 1	COMPONENTS		ORGANIC SUBSTRATE C		
Substrate Type	Diamet		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock Boulder	> 256 mm (10"))		Detritus	sticks, wood, coarse plant materials (CPOM)	2	
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-		20	Muck-Mud	black, very fine organic (FPOM)		
Sand	0.06-2mm (gritt	y)	80	Marl	grey, shell fragments		
Silt	0.004-0.06 mm		-	Ì			
Clay	< 0.004 mm (sli	ck)]			

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME Winters Run	LOCATION Bel Air, Harford County, Maryland		
STATION #_WR-002 RIVERMILE	STREAM CLASS Perennial		
LAT <u>39.516823°N</u> LONG <u>76.369228°W</u>	RIVER BASIN Bush River		
STORET #	AGENCY MDNR	Client: Maryland American Water Company	
INVESTIGATORS S. Hockenberry, A. Thomas			
FORM COMPLETED BY Thomas/Hockenberry	DATE 10/19/15 TIME 10:55	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	

	_ Habitat	Condition Category						
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
each	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common. Mixture of soft sand, m or clay; mud may be dominant; some root ma and submerged vegetati present.		All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.			
nate(score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.			
mete_	score 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	score 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition Category							
	Parameter	Optimal	Suboptimal	Marginal	Poor					
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.					
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
apling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.					
san	SCORE 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.					
eva	SCORE 3 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
to be	SCORE $\frac{5}{(RB)}$	Right Bank 10 9	8 7 6	5 4 3	2 1 0					
Parameters to	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.					
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0					
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.					
	SCORE <u>5</u> (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
	SCORE 2 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0					

Total Score 99

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME W	nters Run	LOCATION Bel Air, Harford	d County, Maryland		
STATION #_WR-002	RIVERMILE	STREAM CLASS Perennial			
LAT 39.516823°N	LONG _76.369228°W	RIVER BASIN Bush River			
STORET#		AGENCY MDNR	Client: Maryland American Water C	ompany	
INVESTIGATORS S	S. Hockenberry, A. Thomas	- -	LOT NUMBER		
FORM COMPLETE	D BY Thomas/Hockenberry	DATE 10/19/15 TIME 10:55 VAM PM	REASON FOR SURVEY Stream Assessm Macroinvertebrat		
HABITAT TYPES			Banks%		
SAMPLE	Gear used D-frame	kick-net Other			
COLLECTION	_				
	How were the samples of	collected? wading	from bank from boat		
		jabs/kicks taken in each habitat t Snags Vegetated I es Other	Banks Sand_16		
GENERAL COMMENTS	Reach WR-002 was als	so sampled for a duplicate QA/	QC sample.		
	LISTING OF AQUATE d abundance: 0 = Abso		, 2 = Common, 3= Abundant, 4 =		
Periphyton	① 1	2 3 4 Slimes	① 1 2	3 4	
Filamentous Algae	① 1	2 3 4 Macroin	nvertebrates 0 1 2	3 4	
Macrophytes	<u> </u>	2 3 4 Fish	0 1 2	3 4	
FIELD OBSERVATIONS OF MACROBENTHOS Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)					
Porifera	_	nisoptera ① 1 2	3 4 Chironomidae 0 1 2	3 4	
Hydrozoa		rgoptera 0 1 2	3 4 Ephemeroptera 0 1 2	3 4	
Platyhelminthes		emiptera 0 1 2	3 4 Trichoptera 0 1 2		
Turbellaria		oleoptera 0 1 2	3 4 Other ① 1 2	3 4	
Hirudinea		pidoptera 0 1 2	3 4		
Oligochaeta	=	alidae 0 1 2	3 4		
Isopoda		orydalidae 0 1 2	3 4		
Amphipoda		pulidae ① 1 2	3 4		
Decapoda		npididae 0 1 2	3 4		
Gastropoda	_	muliidae 0 1 2	3 4		
Bivalvia	① 1 2 3 4 Ta	ıbinidae ① 1 2	3 4	l.	

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME Winters Run		LOCATION Bel Air, Harford County, Maryland			
STATION #_WR-003 R	IVERMILE	STREAM CLASS Perennial			
LAT <u>39.519142°N</u> LO	ONG _76.369359°W	RIVER BASIN Bush River			
STORET #		AGENCY MDN	NR.	Client: Maryland American Water Company	
INVESTIGATORS S. Hoc	kenberry, A. Thomas				
FORM COMPLETED BY	Thomas/Hockenberry	DATE 10/19/15 TIME 11:40	PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	
	1	-			
WEATHER CONDITIONS	Now			Has there been a heavy rain in the last 7 days? ☐ Yes ☐ No	
	rain ((heavy rain) (steady rain) (s (intermittent)	=	Air Temperature 10 ° C	
	%□ %cl	loud cover ear/sunny	□% ☑	Other Cool and breezy	
SITE LOCATION/MAP	Draw a map of the sit	e and indicate th	e areas sampl	ed (or attach a photograph)	
	See Appendix C	- Reach Pho	tographs &	& Mapping	
STREAM	Stream Subsystem		_	Stream Type	
CHARACTERIZATION	☐ Perennial ☐ Inte	ermittent Tida	al	☐ Coldwater ☐ Warmwater	
	Stream Origin ☐Glacial	☐Spring-fee	d	Catchment Areakm ²	
	Glacial Non-glacial montane Swamp and bog	Spring-fee ✓ Mixture o ✓ Other	of origins		

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom ✓ Fores ☐ Field, ✓ Agric ☐ Resid	ultural DOther	duse rcial al	Local Watershed NPS No evidence Som Obvious sources Local Watershed Eros None Moderate	e potential sources
RIPARIA VEGETA (18 meter	TION		e the dominant type and Sh		minant species present Ho	erbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) 0.0026 ted Stream Depth 0.10 < 3.1	m m² km² om	Canopy Cover □ Partly open □ Partl High Water Mark □ Proportion of Reach R Morphology Types □ Riffle 10 % □ □ Pool 20 % Channelized □ Yes Dam Present □ Yes	m
LARGE V DEBRIS	VOODY	LWD Density	of LWDm	² /km ² (LWD /	reach area)	
AQUATIO VEGETA		Indicate the dominant type and record the dominant species present Rooted emergent			□Free floating	
WATER QUALITY Temperature 8.16 0 C Specific Conductance 0.315 Dissolved Oxygen 14.16 mg/L pH 5.64 Turbidity 3.2 NTUs WQ Instrument Used Horit			ed Oxygen 14.16 mg/L sity 3.2 NTUs			Chemical Other Globs Flecks ured)
		Petroleum None	Looking at stones which	Other sat hare not deeply embedded,		
INC		STRATE dd up to 1	COMPONENTS		ORGANIC SUBSTRATE C	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area
Bedrock Boulder	> 256 mm (10")			Detritus	sticks, wood, coarse plant materials (CPOM)	5
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-:		15 	Muck-Mud	black, very fine organic (FPOM)	
Sand Silt Clay	0.06-2mm (gritt 0.004-0.06 mm < 0.004 mm (sli		80 Marl g		grey, shell fragments	

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME Winters Run	LOCATION Bel Air, Harford C	County, Maryland	
STATION #_WR-003 RIVERMILE	STREAM CLASS Perennial		
LAT <u>39.519142°N</u> LONG <u>76.369359°W</u>	RIVER BASIN Bush River		
STORET #	AGENCY MDNR	Client: Maryland American Water Company	
INVESTIGATORS S. Hockenberry, A. Thomas			
FORM COMPLETED BY Thomas/Hockenberry	DATE 10/19/15 TIME 11:40 ✓AM PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	

	_ Habitat		Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
each	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
nate	score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.
mete	score 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Para	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	score 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
npling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
l san	SCORE O	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 4 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE $\underline{4}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 5 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 97

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME Wir	nters Run	LOCATION Bel Air, Harford County, Maryland		
STATION #_WR-003	RIVERMILE	STREAM CLASS Perennial		
LAT 39.519142°N	LONG _76.369359°W	RIVER BASIN Bush River		
STORET#		AGENCY MDNR	Client: Maryland An	nerican Water Company
INVESTIGATORS S	. Hockenberry, A. Thomas	.1	LOT NUMBER	
FORM COMPLETED	-	DATE 10/19/15 TIME 11:40	REASON FOR SURVEY	Stream Assessment & Macroinvertebrate Survey
HABITAT TYPES	Indicate the percentage of each habitat type present ☐ Cobble 15			
SAMPLE	Gear used D-frame			_
COLLECTION	How were the samples col		from bank	
	How were the samples con	llected: wading in	rom bank 🗀 nom	boat
	Indicate the number of ja ☐Cobble_4 ☐Su ☐Submerged Macrophytes	bs/kicks taken in each habitat ty nags Vegetated B s Other (ype. Banks	16
GENERAL COMMENTS				
	LISTING OF AQUATION ABOUNDED TO A LISTING OF AQUATION OF A LISTING OF	C BIOTA nt/Not Observed, 1 = Rare,	2 = Common, 3= Abu	ındant, 4 =
Periphyton		2 3 4 Slimes		① 1 2 3 4
Filamentous Algae			vertebrates	0 1 2 3 4
Macrophytes	<u> </u>	2 3 4 Fish		0 1 2 3 4
FIELD OBSERVATIONS OF MACROBENTHOS Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)				
Porifera		•	3 4 Chironomidae	0 1 2 3 4
Hydrozoa			3 4 Ephemeroptera	
Platyhelminthes	_	•	3 4 Trichoptera	0 1 2 3 4
Turbellaria Hirudinea			3 4 Other	0 1 2 3 4
Hirudinea Oligochaeta		•	3 4 3 4	
Isopoda		<u> </u>	3 4 3 4	
Amphipoda		·	3 4	
Decapoda Decapoda	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	alluae U 1 2	3 4 1	
Decapoua			2 1	
Gastropoda	① 1 2 3 4 Emp	pididae 0 1 2	3 4	
Gastropoda Bivalvia	① 1 2 3 4 Emp ① 1 2 3 4 Sim	pididae $0 \bigcirc 2$ nuliidae $0 \bigcirc 2$	3 4 3 4 3 4	

Culcidae

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME Winters Run		LOCATION Bel Air, Harford County, Maryland			
STATION #_WR-004 R	IVERMILE	STREAM CLASS Perennial			
LAT <u>39.519674°N</u> LO	ONG _76.372012°W	RIVER BASIN Bush River			
STORET #		AGENCY MDN	IR	Client: Maryland American Water Company	
INVESTIGATORS S. Hoc	kenberry, A. Thomas				
FORM COMPLETED BY	Thomas/Hockenberry	DATE 10/19/15 TIME 12:40	AM _/ PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	
WEATHER CONDITIONS	Now		Past 24 hours	Has there been a heavy rain in the last 7 days? ☑ Yes ☑ No	
	storm	(heavy rain) (steady rain)		Air Temperature 10 ° C	
	showers	s (intermittent) loud cover	□ □%	Other Cool and breezy	
		ear/sunny	<u> </u>		
SITE LOCATION/MAP	Draw a map of the sit	e and indicate the	e areas sampl	led (or attach a photograph)	
	See Appendix C	- Reach Pho	tographs	& Mapping	
STREAM	Stream Subsystem			Stream Type	
CHARACTERIZATION	Perennial Inte	ermittent Tida	al	☐Coldwater ☐Warmwater	
	Stream Origin	☐Spring-fee	1	Catchment Areakm ²	
	Glacial Non-glacial montane Swamp and bog	☐ Spring-fed ☐ Mixture o ☐ Other	f origins		

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		☐ Fores	/Pasture Industrial cultural Other		No evidence ☑Som ☐Obvious sources Local Watershed Erosi	Local Watershed NPS Pollution No evidence ☑Some potential sources Obvious sources Local Watershed Erosion None ☑Moderate ☐ Heavy	
RIPARIA VEGETA (18 meter	TION		e the dominant type and Sh		minant species present He		
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) 0.0020 ted Stream Depth 0.10 1.5 2 Velocity 0.8 m	mm²km²m	Proportion of Reach R Morphology Types	<u>5</u> m	
LARGE V DEBRIS	VOODY	LWD Density	<u>°</u> m² of LWD <u>°</u> m	1 ² /km ² (LWD / 1	reach area)		
AQUATIO VEGETA		Indicate the dominant type and record the dominant species present Rooted emergent			☐Free floating		
			ed Oxygen 14.17 mg/L ity 2.50 NTUs		□Fishy Water Surface Oils	Chemical Other	
SEDIMEN SUBSTRA		Odors Norm Chem Other		Petroleum None	Looking at stones whic are the undersides blac	Other sit	
INC			COMPONENTS		ORGANIC SUBSTRATE C		
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	(does not necessarily add Characteristic	% Composition in Sampling Area	
Bedrock Boulder	> 256 mm (10")	Detri		Detritus	sticks, wood, coarse plant materials (CPOM)	5	
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-	5"-10") 30 M		Muck-Mud	black, very fine organic (FPOM)		
Sand	0.06-2mm (gritt	y)	70	Marl	grey, shell fragments		
Silt	0.004-0.06 mm					-	
Clay	< 0.004 mm (sli	ck)					

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME Winters Run	LOCATION Bel Air, Harford County, Maryland		
STATION #_WR-004 RIVERMILE	STREAM CLASS Perennial		
LAT <u>39.519674°N</u> LONG <u>76.372012°W</u>	RIVER BASIN Bush River		
STORET#	AGENCY MDNR	Client: Maryland American Water Company	
INVESTIGATORS S. Hockenberry, A. Thomas			
FORM COMPLETED BY Thomas/Hockenberry	DATE 10/19/15 TIME 12:40 □AM PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	

	Habitat				
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
each	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
nate(score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.
mete	score 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Para	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
npling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
ı san	score 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE $\frac{6}{2}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 107

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME Winters Run		LOCATION Bel Air, Harford County, Maryland		
STATION #_WR-004	RIVERMILE	STREAM CLASS Perennial		
LAT _39.519674°N	LONG _76.372012°W	RIVER BASIN Bush River		
STORET#		AGENCY MDNR	Client: Maryland American Water Company	
INVESTIGATORS S	6. Hockenberry, A. Thomas		LOT NUMBER	
FORM COMPLETE		DATE 10/19/15 TIME 12:40	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey	
HABITAT TYPES	Indicate the percentage of ☐ Cobble 30 % ☐ S ☐ Submerged Macrophyte	of each habitat type present nags%		
SAMPLE COLLECTION		llected?	Banks ✓ Sand_14	
GENERAL COMMENTS				
	LISTING OF AQUATION of abundance: 0 = Absert		2 = Common, 3= Abundant, 4 =	
Periphyton	① 1	2 3 4 Slimes	① 1 2 3 4	
Filamentous Algae	e ① 1	2 3 4 Macroin	vertebrates 0 1 2 3 4	
Macrophytes	<u> </u>	2 3 4 Fish	0 1 (2) 3 4	
FIELD OBSERVATIONS OF MACROBENTHOS Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)				
Porifera	_	soptera 0 1 2	3 4 Chironomidae 0 1 2 3 4	
Hydrozoa	-	goptera 0 1 2	3 4 Ephemeroptera 0 1 2 3 4	
Platyhelminthes		miptera	3 4 Trichoptera 0 1 2 3 4 3 4 Other 0 1 2 3 4	
Turbellaria Hirudinea	_	eoptera 0 1 2 vidoptera 0 1 2	3 4 Other ① 1 2 3 4 3 4	
Oligochaeta		lidae 0 1 2	3 4	
Isopoda	<u> </u>	rydalidae	3 4	
Amphipoda		ulidae 0 1 2	3 4	
Decapoda		pididae 0 1 2	3 4	
Gastropoda		nuliidae 0 1 2	3 4	
Bivalvia		oinidae 0 1 2	3 4	

Culcidae

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME Winters Run		LOCATION Bel Air, Harford County, Maryland				
STATION #_WR-005 R	IVERMILE	STREAM CLASS Perennial				
LAT 39.520441°N LO	ONG _76.374756°W	RIVER BASIN Bush River				
STORET #		AGENCY MDN	IR	Client: Maryland American Water Company		
INVESTIGATORS S. Hoc	kenberry, A. Thomas					
FORM COMPLETED BY	Thomas/Hockenberry	DATE 10/19/15 TIME 13:35	AM _/ PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey		
	l 					
WEATHER CONDITIONS	Now —		Past 24 hours	Has there been a heavy rain in the last 7 days? ☑ No		
	rain ((heavy rain) steady rain)		Air Temperature 10 ° C		
	showers	s (intermittent) loud cover	□ □%	Other Cool and breezy		
		ear/sunny	7			
SITE LOCATION/MAP	Draw a map of the sit	e and indicate the	e areas sampl	led (or attach a photograph)		
	See Appendix C	- Reach Pho	tographs a	& Mapping		
			_			
STREAM CHARACTERIZATION	Stream Subsystem ☑ Perennial ☐ Inte	ermittent Tida	al	Stream Type Coldwater Warmwater		
	Stream Origin			Catchment Area - km²		
	Glacial Non-glacial montane Swamp and bog	Spring-fed Mixture of Other	l f origins			
	Swamp and bog	Other				

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom ✓ Fores ✓ Field/ ☐ Agric ☐ Resid	Pasture Industria	rcial al	Local Watershed NPS No evidence ☑Som Obvious sources Local Watershed Eros None ☑Moderate	e potential sources
RIPARIA VEGETA (18 meter	TION	Indicate the dominant type and record the dominant species present ☐ Trees ☐ Shrubs ☐ Grasses ☐ Herbaceous dominant species present				
INSTREA FEATURI		Estimat Samplin Area in Estimat	km² (m²x1000) 0.0020 ted Stream Depth 010 1.0 Velocity 0.5 m	mm²km² +m	Canopy Cover ☐ Partly open ☐ Partl High Water Mark ☐ Proportion of Reach R Morphology Types ☐ Riffle 30	m
LARGE V DEBRIS	VOODY	LWD Density	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
AQUATIO VEGETA		Roote Floati	e the dominant type and demergent Rc Rc Rc Rd	ooted submerge tached Algae	nt Rooted floating	□Free floating
WATER (QUALITY	Specific Dissolve pH 5.92 Turbidi	cature 9.56 0 C c Conductance 0.293 mS/CM ed Oxygen 13.90 mg/L city 2.6 NTUs ctrument Used Horiba U-22		Water Surface Oils	Chemical Other Globs
SEDIMEN SUBSTRA		Odors Norm Chem Other Oils Absen		□ Petroleum □ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other_sut□ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No		
INC		STRATE (COMPONENTS		ORGANIC SUBSTRATE C	
Substrate Type	Diamet		% Composition in Sampling Reach	Substrate Characteristic % Composition in Sampling Area		
Bedrock Boulder	> 256 mm (10"))	 10	Detritus	sticks, wood, coarse plant materials (CPOM)	5
Cobble Gravel	64-256 mm (2.5 2-64 mm (0.1"-2	5"-10")	30 10	Muck-Mud	black, very fine organic (FPOM)	
Sand	0.06-2mm (gritt	y)	50	Marl	grey, shell fragments	
Silt	0.004-0.06 mm			ļ		-
Clay	< 0.004 mm (sli	ick)				

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

STREAM NAME Winters Run	LOCATION Bel Air, Harford C	County, Maryland
STATION #_WR-005 RIVERMILE	STREAM CLASS Perennial	
LAT <u>39.520441°N</u> LONG <u>76.374756°W</u>	RIVER BASIN Bush River	
STORET #	AGENCY MDNR	Client: Maryland American Water Company
INVESTIGATORS S. Hockenberry, A. Thomas		
FORM COMPLETED BY Thomas/Hockenberry	DATE 10/19/15 TIME 13:35 □AM PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey

	Habitat	Condition Category						
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
each	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.			
nate(score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large-deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or pools absent.			
mete	score 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parai	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	score 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	score 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
npling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.	
l san	SCORE IU	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.	
e eva	SCORE 5 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
to be	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE <u>5</u> (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 2 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE $\frac{6}{3}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	$SCORE \underline{6}(RB)$	Right Bank 10 9	8 7 6	5 4 3	2 1 0	

Total Score 105

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME WI	nters Run	LOCATION Bel Air, Harford County, Maryland			
STATION # WR-005	RIVERMILE	STREAM CLASS Perennial			
LAT _39.520441°N	LONG _76.374756°W	RIVER BASIN Bush River			
STORET #		AGENCY MDNR	Client: Maryland American Water Company		
INVESTIGATORS S	S. Hockenberry, A. Thomas	;	LOT NUMBER		
FORM COMPLETE	D BY Thomas/Hockenberry	DATE 10/19/15 TIME 13:35 AM PM	REASON FOR SURVEY Stream Assessment & Macroinvertebrate Survey		
HABITAT TYPES		of each habitat type present Snags%	Banks%		
SAMPLE COLLECTION	Gear used ☑D-frame How were the samples c Indicate the number of j ☑Cobble ⁵ □ ☐Submerged Macrophyte		from bank		
GENERAL COMMENTS					
	LISTING OF AQUATI d abundance: 0 = Abse		e, 2 = Common, 3= Abundant, 4 =		
Periphyton	① 1	2 3 4 Slimes	① 1 2 3 4		
Filamentous Algae	0 1	2 3 4 Macroi	nvertebrates 0 1 2 3 4		
Macrophytes	<u> </u>	2 3 4 Fish	0 1 2 3 4		
FIELD OBSERVATIONS OF MACROBENTHOS Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3= Abundant (>10 organisms), 4 = Dominant (>50 organisms)					
Porifera		isoptera 0 1 2	3 4 Chironomidae 0 1 2 3 4		
Hydrozoa		goptera 0 1 2	3 4 Ephemeroptera 0 1 2 3 4		
Platyhelminthes	_	emiptera 0 1 2	3 4 Trichoptera 0 1 2 3 4		
Turbellaria Hirudinea	_	oleoptera 0 1 2 pidoptera 0 1 2	3 4 Other ① 1 2 3 4		
Oligochaeta		alidae 0 1 2	3 4		
Isopoda		orydalidae 0 1 2	3 4		
Amphipoda		oulidae 0 1 2	3 4		
Decapoda		npididae 0 1 2	3 4		
Gastropoda	_	nuliidae 0 1 2	3 4		
Divolvio		hinidaa 0 1 2	2 1		

APPENDIX E

SUMMARY OF CROSS-SECTION ANALYSIS OF INTAKE & FLOW-BY RATES

Appendix E Summary of Cross-Section Analysis of Intake and Flow-By Rates

Cross Section @ Existing Intake (2015 GF Survey)

WETTED PERIMETER

feet

37.63

38.62

39.60

43.31

44.20

44.92

46.20

47.00

47.80

48.59

49.42

50.72

51.47

52.18

52.76

53.34

53.92

55.14

55.85

56.55

57.26

57.97

58.67

59.36

60.01

60.66

62.20

FLOW AREA square feet

18.50

27.7037.09

47.01

57.46

68.05

78.85

89.87

101.05

112.38

123.88

135.60

147.54

159.61

171.78

184.02

196.33

208.81

221.48

234.28

247.19

260.23

273.40

286.68

300.07

313.56

333.72

ELEVATION

NAVD 88

180.25

180.5

180.75

181

181.25

181.5

181.75

182

182.25

182.5

182.75

183

183.25

183.5

183.75

184

184.25

184.5

184.75

185

185.25

185.5

185.75

186

186.25

186.5

186.8681

07.47.00.	
STATION	ELEVATION
23.0925	189.1391
24.2882	186.8681
24.6829	186.1185
26.5007	183.4786
27.854	182.5289
28.7263	181.8079
29.8307	181.0334
31.5314	180.806
33.4505	180.7759
36.0581	179.8153
38.3871	179.7351
41.0218	179.758
44.8817	179.622
47.467	179.426
50.1196	179.8375
53.5227	180.1422
56.9989	180.0971
60.626	180.1255
63.7738	180.0108
66.1	179.5168
68.1223	178.6746
69.2924	178.6147
69.4061	178.6555
71.0615	179.3312
71.516	181.0125
71.7924	181.5108
72.5405	181.7139
73.8589	182.7609
74.7424	183.0216
74.7749	183.056
75.4003	184.3134
76.1023	184.388
78.0114	185.8953
78.9808	186.8325
79.6991	186.8681

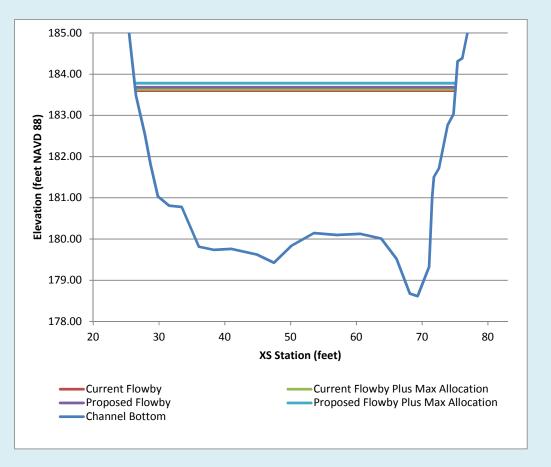
Discharge Rating of Diversion Dam

Assume:	3H:1V	Downstream slope
	2H:1V	Upstream slope
L =	10	ft (U/S to D/S crest length)
w =	50	ft (width of weir crest)
Crest =	183.46	Based on 2015 GF Survey

Q = C*W*H^1.5 (Broad-crested weir discharge equation)

Discharge coefficients based on Figure 10 of USGS

Circular 397 (1957)


ELEVATION	HEAD	<u>h/L</u>	<u>c</u>	DISCHARGE
NAVD 88	feet	-	-	cfs
183.46	0	0	2.91	0.00
183.5	0.04	0.004	2.91	1.16
183.75	0.29	0.029	2.91	22.72
184	0.54	0.054	2.91	57.74
184.25	0.79	0.079	2.91	102.17
184.5	1.04	0.104	2.91	154.32
184.75	1.29	0.129	2.91	213.18
185	1.54	0.154	2.91	278.06
185.25	1.79	0.179	2.91	348.45
185.5	2.04	0.204	2.91	423.94
185.75	2.29	0.229	2.91	504.22
186	2.54	0.254	2.92	591.02
186.25	2.79	0.279	2.92	680.39
186.5	3.04	0.304	2.93	776.51
186.75	3.29	0.329	2.94	877.23
187	3.54	0.354	2.95	982.42

Impacts of Proposed Flowby Requirement

	Current Flowby	Current Flowby Plus Max Allocation	Proposed Flowby	Proposed Flowby Plus Max Allocation
Discharge (MGD)	6.07	7.77	10.62	17.32
Discharge (cfs)	9.39	12.02	16.43	26.79
Elevation (NAVD 88)	183.60	183.63	183.68	183.78
Wetted Perimeter (feet)	52.40	52.47	52.59	52.83
Flow Area (square feet)	164.25	165.74	168.23	173.20

Percent Reduction in Wetted Perimeter Due to Max Proposed Withdrawal: 0.45%

Percent Reduction in Flow Area Due to Max Proposed Withdrawal: 2.87%

3.3

Threatened & Endangered Species Coordination

3.3.1

Maryland DNR Coordination

Martin O'Malley, Governor Anthony G. Brown, Lt. Governor Joseph P. Gill, Secretary Frank W. Dawson III, Deputy Secretary

September 17, 2014

Danielle Iuliucci Gannett Fleming, Inc. PO Box 67100 Harrisburg, PA 17106-7100

RE: Environmental Review for The American Water Company, Bel Air Reservoir Feasibility Study, Bel Air, US Route 1, Winters Run, Harford County, MD.

Dear Ms. Iuliucci:

The Wildlife and Heritage Service has determined that there are no State or Federal records for rare, threatened or endangered species within the boundaries of the project site as delineated. As a result, we have no specific comments or requirements pertaining to protection measures at this time. This statement should not be interpreted however as meaning that rare, threatened or endangered species are not in fact present. If appropriate habitat is available, certain species could be present without documentation because adequate surveys have not been conducted.

Thank you for allowing us the opportunity to review this project. If you should have any further questions regarding this information, please contact me at (410) 260-8573.

Sincerely,

Lori A. Byrne,

Environmental Review Coordinator Wildlife and Heritage Service MD Dept. of Natural Resources

ER# 2014.1333.ha

August 27, 2014

Lori Byrne DNR Wildlife & Heritage Service 580 Taylor Avenue Tawes Office Bldg E-1 Annapolis, MD 21401 **GANNETT FLEMING, INC.** P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

MAILED 8/27/14 Certified 7013 2250 0000 4345 7922

RE: Request for Environmental Review

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

Dear Ms. Byrne:

Gannett Fleming, Inc. (Gannett Fleming) is requesting an environmental review of a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting an environmental review to determine if any species of concern occur within or in close proximity to the study area. Please refer to **Figure 1** for the USGS topographic map of the study area. **Figure 2** provides an aerial photograph of the project study area.

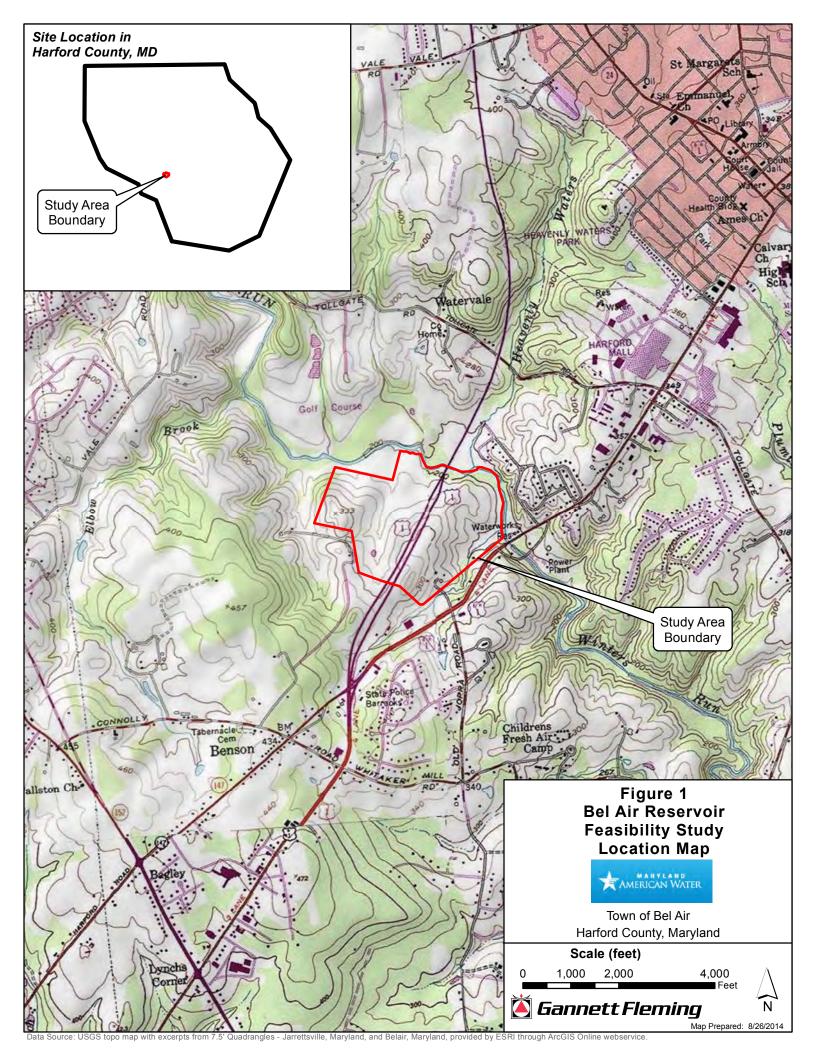
The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area. We would appreciate an expedited environmental review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci

Environmental Scientist


Attachments

Copies Furnished (electronically): S. Liskovic

S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist

File

Current and Historical Rare, Threatened, and Endangered Species Of Harford County, Maryland*

April 2010

Maryland Department of Natural Resources Wildlife and Heritage Service

Scientific Name	Common Name	Global <u>Rank</u>	State <u>Rank</u>	State Status	Federal <u>Status</u>
Animals					
Acipenser brevirostrum	Shortnose Sturgeon	G3	S1	Е	LE
Acipenser oxyrinchus	Atlantic Sturgeon	G3	S1		С
Cryptobranchus alleganiensis	Eastern Hellbender	G3G4	S1	E	
Enallagma weewa	Blackwater Bluet	G5	S2		
Erynnis martialis	Mottled Duskywing	G3	S1	E	
Etheostoma sellare	Maryland Darter	GH	SH	E	LE
Etheostoma vitreum	Glassy Darter	G4G5	S1S2	Т	
Glyptemys muhlenbergii	Bog Turtle	G3	S2	Т	LT
Graptemys geographica	Northern Map Turtle	G5	S1	E	
Haliaeetus leucocephalus	Bald Eagle	G5	S3B		
Leptodea ochracea	Tidewater Mucket	G3G4	S1S2		
Percina caprodes	Logperch	G5	S1S2	Т	
Sorex fumeus	Smoky Shrew	G5	S2S3	I	
Sorex hoyi winnemana	Southern Pygmy Shrew	G5T4	S2		
Sperchopsis tessellatus	A Hydrophilid Beetle	GNR	S2		
Speyeria idalia	Regal Fritillary	G3	SH	X	
Sternula antillarum	Least Tern	G4	S2B	Т	
Stygobromus tenuis tenuis	Slender Stygobromid	G4T4	SU		
Plants					
Amelanchier stolonifera	Running Juneberry	G5	S2		
Anemone canadensis	Canada Anemone	G5	SH	X	
Antennaria solitaria	Single-headed Pussytoes	G5	S2	Т	
Asplenium bradleyi	Bradley's Spleenwort	G4	SH	X	
Asplenium pinnatifidum	Lobed Spleenwort	G4	S1	Е	
Bidens bidentoides var. mariana	Maryland Bur-marigold	G3T3	S3.1		
Bidens coronata	Tickseed Sunflower	G5	S2S3		
Bidens mitis	Small-fruited Beggar-ticks	G4?	S1	E	
Boltonia asteroides	Aster-like Boltonia	G5	S1	E	
Buchnera americana	Blue-hearts	G5?	SH	X	
Campanula rotundifolia	Harebell	G5	S2		
Carex buxbaumii	Buxbaum's Sedge	G5	S2	Т	
Carex davisii	Davis' Sedge	G4	S1	E	
Carex hitchcockiana	Hitchcock's Sedge	G5	S1	E	
Carex lacustris	Lake-bank Sedge	G5	S2		
Carex pellita	Woolly Sedge	G5	S2?		
Carex planispicata	A Sedge	G4Q	S1S2		
Castanea dentata	American Chestnut	G4	S2S3		
Ceratophyllum echinatum	Prickly Hornwort	G4?	S1	E	
Coreopsis tripteris	Tall Tickseed	G5	S1	Е	
Cuscuta polygonorum	Smartweed Dodder	G5	S1	Е	
Cyperus dentatus	Toothed Sedge	G4	SH	Х	
Cystopteris tennesseensis	Tennessee Bladder-fern	G5	S1		

Diplazium pycnocarpon	Desmodium rigidum	Rigid Tick-trefoil	GNRQ	S1	Е
Elatine minima Small Waterwort G5 S1 E Equisetum fluviatile Water Horsetail G5 S1 E Eriocaulon aqualicum Seven-angled Pipewort G3 S1 E Eriocaulon parkeri Parker's Pipewort G3 S1 E Eurybar radula Rough-leaved Aster G5 S1 E Gemtiana andrewsii Fringe-tip Closed Gentian G5 S1 E Geum aleppicum Yellow Avens G5 S1 E Hysterical suaveolens Sweet-scented Indian-plantain G4 S2 T Hystericum ascyron Great St. John's-wort G4 S2 T Hypericum ascyron Great St. John's-wort G4 S2 T Juncus balticus Baltic Rush G5 SH X Juncus balticus Baltic Rush G5 SH X Juncus balticus Baltic Rush G5 SH X Juncus balticus Modort G4G5 S2	<u> </u>	_	G3Q	SH	
Elatine minima Small Waterwort G5 S1 E Equisetum fluviatile Water Horsetail G5 S1 E Eriocaulon aqualicum Seven-angled Pipewort G3 S2 T Eirocaulon parkeri Parker's Pipewort G3 S2 T Eurybar radula Rough-leaved Aster G5 S1 E Gemtiana andrewsii Fringe-tip Closed Gentian G5 S1 E Geum aleppicum Yellow Avens G5 S1 E Hissteola suaveolens Sweet-scented Indian-plantain G4 S2 T Hyspericum ascyron Great St. John's-wort G4 S2 T Hypericum ascyron Great St. John's-wort G4 S2 T Juncus balticus Baltic Rush G5 S1 X Juncus balticus Baltic Rush G5 S1 X Juncus balticus Baltic Rush G5 S1 X Juncus balticus Modort G4 S2 <td< td=""><td>Diplazium pycnocarpon</td><td>Glade Fern</td><td>G5</td><td>S2</td><td>Т</td></td<>	Diplazium pycnocarpon	Glade Fern	G5	S2	Т
Eriocaulon aquaticum Seven-angled Pipewort G5 S1 E Eriocaulon parkeri Parker's Pipewort G3 S2 T Eurybah radula Rough-leaved Aster G5 S1 E Gentiana andrewsii Fringe-tip Closed Gentian G57 S2 T Geum aleppicum Yellow Avens G5 S1 E Hasteola Suaveolens Sweet-scented Indian-plantain G4 S2 T Hydrastis canadensis Goldenseal G4 S2 T Hydrastis canadensis G6 S1 X Juncus balticus Baltic Rush G5 SH X Juncus brachycarpus Short-fruited Rush G3 S1 E Juncus brachycarpus Short-fruited Rush G3 S1 E		Small Waterwort	G5	S1	Е
Enocaulon parkeri Parker's Pipewort G3 S2 T Eurphoriba purpurea Darlington's Spurge G3 S1 E Eurphoriba qualua Rough-leawed Aster G5 S1 E Gentana andrewsii Fringe-tip Closed Gentian G5* S2 T Geum aleppicum Yellow Avens G5 S1 E Hasteola suaveolens Sweet-scented Indian-plantain G4 S1 E Hydrastis canadensis Goldenseal G4 S2 T Hypericum ascyron Graet St. John's-wort G4 S1 E Hyparicum ascyron Graet St. John's-wort G4 S2 T Juncus balticus Baltic Rush G5 S1 E Juncus balticus Baltic Rush G5 SU X Juncus bangii Longi Rush G4G5 SU X Juncus Indigia Longi Rush G5 S1 E Limm floridanum Florida Yellow Flax G5* S1 <td< td=""><td>Equisetum fluviatile</td><td>Water Horsetail</td><td>G5</td><td>S1</td><td>Е</td></td<>	Equisetum fluviatile	Water Horsetail	G5	S1	Е
Ericoaulon parkeri Parkers Pipewort G3 S2 T Euphorbia purpurea Darlington's Spurge G3 S1 E Eurybia radula Rough-leaved Aster G5 S1 E Gentian andrewsii Fringe-tip Closed Gentlan G5? S2 T Geum aleppicum Yellow Avens G5 S1 E Hasteola suaveolens Sweet-scented Indian-plantain G4 S1 E Hypericum ascyron Great St. John's-wort G4 S2 T Hypericum ascyron Great St. John's-wort G4 S2 T Juricus baricus Baltic Rush G5 S1 E Juncus baricus Batter Rush G5 SH X Juncus brachycarpus Short-fruited Rush G4G5 SU Juncus brachycarpus Short-fruited Rush G4G5 SU Juncus balticus S1 E Limosella australis Mudwort G4 S2 S1 E Linum floridarum Florida Yellow Flax </td <td>Eriocaulon aquaticum</td> <td>Seven-angled Pipewort</td> <td>G5</td> <td>S1</td> <td>Е</td>	Eriocaulon aquaticum	Seven-angled Pipewort	G5	S1	Е
Euphobia purpurea Darlington's Spurge G3 S1 E Eurybia radula Rough-leaved Aster G5 S1 E Gentiana andrewsii Fringe-tip Closed Gentian G5? S2 T Geum aleppicum Yellow Avens G5 S1 E Hasteola suaveolens Sweet-scented Indian-plantain G4 S1 E Hydrastis canadensis Goldenseal G4 S2 T Hydricum ascyron Great St. John's-wort G4 SH X Inis prismatica Slender Blue Flag G4G5 S1 E Juncus balticus Battice Blue Flag G4G5 S1 E Juncus baricus Butternut G4 S2S3 U Juncus baricus Butternut G4 S2 S1 Juncus baricus Short-fruited Rush G4G5 SU Juncus baricus Short-fruited Rush G4G5 SU Juncus baricus Short-fruited Rush G3C S1 E	•	Parker's Pipewort	G3	S2	Т
Eurybia radula Rough-leaved Aster G5 S1 E Gentiana andrewsii Fringe-tip Closed Gentian G5? S2 T Gentiana andrewsii Yellow Avens G5 S1 E E Hasteola suaveolens Sweet-scented Indian-plantain G4 S1 E Hydrastis canadensis Goldenseal G4 S2 T T T T T T T T T	•		G3	S1	Е
Gentiana andrewsii Fringe-tip Closed Gentian G5? S2 T Geum aleppicum Yellow Avens G5 S1 E Hasteola suaveolens Sweet-scented Indian-plantain G4 S2 T Hydrastis canadensis Goldenseal G4 S2 T Hypericum ascyron Great St. John's-wort G4 S2 T Ins prismatica Slender Blue Flag G4G5 S1 E Juglans cinerea Butternut G4 S2S3 Juncus balticus Baltic Rush G5 SH X Juncus brachycarpus Short-fruited Rush G4G5 SU V Juncus longii Long's Rush G3Q S1 E Limus locatum G4G5 S2 E Limum floridanum Florida Yellow Flax G5? SH X Ljogodium palmatum Climbing Fern G4 S2 T Lysedium palmatum Climbing Fern G5 S2 S2 T Lysinacia struli			G5	S1	
Geum aleppicum Yellow Avens G5 S1 E Hasteola suaveolens Sweet-scented Indian-plantain G4 S1 E Hydrastis canadensis Goldenseal G4 S1 T Hypericum ascyron Great St. John's-wort G4 SH X Iris prismatica Slender Blue Flag G4G5 S1 E Juncus balticus Baltic Rush G5 SH X Juncus brachycarpus Short-fruited Rush G4G5 SU Juncus Iongii Long's Rush G3Q S1 E Limosella australis Mudwort G4G5 S2 E E Limom Idoridanum Florida Yellow Flax G5 S1 E Limom Sulcatum Grooved Flax G5 S2 E Linum Idoridanum Clond'a Yellow Flax G5 S2 S1 E Ludwigia decurrens Primcose Willow G5 S223 T Lygodium palmatum Climbing Fern G4 S2 T	-	Fringe-tip Closed Gentian	G5?	S2	Т
Hasteola suaveolens Sweet-scented Indian-plantain G4	Geum aleppicum		G5	S1	Е
Hydrastis canadensis Goldenseal G4 S2 T Hydrastis canadensis Goldenseal G4 SH X Hypericum ascyron Great St. John's-wort G4 SH X Junglans cinerea Butternut G4 S2S3 Juncus balticus Baltic Rush G5 SH X Juncus brachycarpus Short-fruited Rush G4G5 SU Juncus longii Long's Rush G3Q S1 E Limosella australis Mudwort G4G5 SU Limun sulcatum Florida Yellow Flax G5? SH X Linum sulcatum Grooved Flax G5? SH X Linum sulcatum Grooved Flax G5 S1 E Ludwigia decurrens Primrose Willow G5 S2S3 Lygodium palmatum Climbing Fern G4 S2 T Lysimachia hybrida Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Myry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S2S3 Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polemonium vanbruntiae Jacob's-ladder G3G4 S2 T Polyagla senega Seneca Snakeroot G4G5 S1 E Potamogeton parifolitius Large-leaved Pondweed G5 S1 E Potamogeton profloitatus Clasping-leaved Pondweed G5 S1 E Potamogeton priolitatus Siender Pondweed G5 S1 E Potamogeton richardsonii Redheadgrass G5 S1 E Potamogeton priolitius Spiral Pondweed G5 S1 E Potamogeton priolitius Spiral Pondweed G5 S1 E Potamogeton richardsonii Redheadgrass G5 S1 E Potamogeton richardsonii Redheadgrass G5 S1 E Potamogeton richardsonii Redheadgrass G5 S1 E Potamogeton priolitius Spiral Pondweed G5 S1 E Potamogeton richardsonii Redheadgrass G5 S1 E Potamogeton richardsonii Redheadgrass G5 S1 E Potamogeton priolitius Long-beaked Arrowhead G5 S1 E Potamogeton		Sweet-scented Indian-plantain	G4	S1	Е
Hypericum ascyron Great St. John's-wort G4 SH X Iris prismatica Slender Blue Flag G465 S1 E Juglans cinerea Butternut G4 S253 Juncus balticus Baltic Rush G5 SH X Juncus longii Long's Rush G3Q S1 E Limosella australis Mudwort G4G5 S2 E Limm floridanum Florida Yellow Flax G5 S1 E Linum sulcatum Grooved Flax G5 S1 E Ludwigia decurrens Primrose Willow G5 S2S3 T Lygodium palmatum Climbing Fern G4 S2 T Lygodium palmatum Climbing Fern G4 S2 T Lygodium palmatum Climbing Fern G5 S2 S Lygodium palmatum Climbing Fern G5 S2 S Lygodium palmatum Climbing Fern G5 S2 T Matteucia struthiopteri	Hydrastis canadensis		G4	S2	Т
Iris prismatica Slender Blue Flag G465 S1 E	Hypericum ascyron		G4	SH	Χ
Juglans cinerea Butternut G4 S2S3 Juncus balticus Baltic Rush G5 SH X Juncus balticus Short-fruited Rush G4G5 SU Juncus longii Long's Rush G3Q S1 E Limosella australis Mudwort G4G5 S2 E Limosella australis Mudwort G4G5 S2 E Limosella australis Mudwort G5P SH X Limum sulcatum Grooved Flax G5P SH X Linum sulcatum Grooved Flax G5P SH X Linum sulcatum Grooved Flax G5P SH X Linum sulcatum Climbing Fern G4 S2 T Lygodium palmatum Climbing Fern G4 S2 T Lygimachia hybrida Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 T Polanisia dodecandra Clammyweed G5 S1 E Potamogeton folioisus Large-leaved Pondweed G5 S1 E Potamogeton pusillus Siender Pondweed G5 S1 E Potamogeton pusillus Siender Pondweed G5 S1 E Potamogeton pusillus Siender Pondweed G5 S1 E Potamogeton spirilus Spiral Pondweed G5 S1 E Potamogeton sp		Slender Blue Flag	G4G5	S1	Е
Junicus balticus		_	G4	S2S3	
Juncus longii	•	Baltic Rush	G5	SH	Х
Juncus longii	Juncus brachycarpus	Short-fruited Rush	G4G5	SU	
Limosella australis Mudwort G4G5 S2 E Linum floridanum Florida Yellow Flax G5? SH X Linum sulcatum Grooved Flax G5 S1 E Ludwigia decurrens Primrose Willow G5 S2S3 Lygodium palmatum Climbing Fern G4 S2 T Mydodium palmatum Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 T Mincum Flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polaticularis lanceolata Swamp Lousewort G5 S1 E Polaticularis lanceolata Swamp Lousewort G5 S1 E Polaticularis lanceolata Sanakeroot G65 S1 E<		Long's Rush	G3Q	S1	Е
Linum floridanum Florida Yellow Flax G5? SH X Linum sulcatum Grooved Flax G5 S1 E Ludwigia decurrens Primrose Willow G5 S2S3 L Lygodium palmatum Climbing Fern G4 S2 T Lysimachia hybrida Lowland Loosestrife G5 S2 T Mateuccia struthiopteris Ostrich Fern G5 S2 T Mysootis macrosperma Large-seeded Forget-me-not G5 S2S3 Palaciularis lanceolata Swamp Lousewort G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polamisia dodecandra Clammyweed G5 S1 E Polamogatis and dodecandra Clammyweed G5 S1 E Polamogatis and publishis Large-leaved Pondweed G5 S1 E Polamogation spirilolius Large-leaved Pondweed G5 S1 E Potamogeton porifoliatus Clasping-leaved Pondweed G5	_	· ·	G4G5	S2	Е
Ludwigia decurrens Primrose Willow G5 S2S3 Lygodium palmatum Climbing Fern G4 S2 T Lysimachia hybrida Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 T Myosotis macrosperma Large-seeded Forget-me-not G5 S2 S2S3 Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polamogatin wantutiae Jacob's-ladder G3G4 S2 T Potamogatin pantutiae Calder Pondweed G5	Linum floridanum	Florida Yellow Flax	G5?	SH	
Lygodium palmatum Climbing Fern G4 S2 T Lysimachia hybrida Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 Myosotis macrosperma Large-seeded Forget-me-not G5 S2S3 Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polanisia dodecandra Clarmyweed G5 S1 E Polamonium vanbruntiae Jacob's-ladder G3G4 S2 T Polamogeton genga Seneca Snakeroot G4G5 S2 T Potamogeton amplifolius Large-leaved Pondweed G5 S1 X Potamogeton pusillus Leafy Pondweed G5 S1 X Potamogeton pusillus Slender Pondweed G5 S1 X Potamogeton perifilus Spiral Pondweed G5 S1 X Potamogeton spirillus Spiral Pondweed G5 S1	Linum sulcatum	Grooved Flax	G5	S1	Е
Lygodium palmatum Climbing Fern G4 S2 T Lysimachia hybrida Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 Myosotis macrosperma Large-seeded Forget-me-not G5 S2S3 Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polanisia dodecandra Clarmyweed G5 S1 E Polamonium vanbruntiae Jacob's-ladder G3G4 S2 T Polamogeton genga Seneca Snakeroot G4G5 S2 T Potamogeton amplifolius Large-leaved Pondweed G5 S1 X Potamogeton pusillus Leafy Pondweed G5 S1 X Potamogeton pusillus Slender Pondweed G5 S1 X Potamogeton perifilus Spiral Pondweed G5 S1 X Potamogeton spirillus Spiral Pondweed G5 S1	Ludwigia decurrens	Primrose Willow	G5	S2S3	
Lysimachia hybrida Lowland Loosestrife G5 S2 T Matteuccia struthiopteris Ostrich Fern G5 S2 Myosotis macrosperma Large-seeded Forget-me-not G5 S2S3 Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polemonium vanbruntiae Jacob's-ladder G3G4 S2 T Polygala senega Seneca Snakeroot G4G5 S2 T Potamogeton amplifolius Large-leaved Pondweed G5 SH X Potamogeton perfoliatus Clasping-leaved Pondweed G5 S1 E Potamogeton perfoliatus Clasping-leaved Pondweed G5 S1 Potamogeton pisillus Slender Pondweed G5 S1 Potamogeton richardsonii Redheadgrass G5 S1 Potamogeton spirillus Spiral Pondweed G5 S1 Potamogeton spirillus Spiral Pondweed G5 S1 Potamogeton zosteriformis Flatstem Pondweed G5 S1 E Pycnanthemum verticillatum Whorled Mountain-mint G5 S1 E Ranunculus ambigens Water-plantain Spearwort G4 SH X Rhynchospora globularis Grass-like Beakrush G5? S1 E Sagittaria australis Long-beaked Arrowhead GNRQ SU Sagittaria calycina Spongy Lophotocarpus G5 S2 Salix humilis var. tristis Dwarf Prairie Willow G4G5 S1 Salix humilis var. tristis Dwarf Prairie Willow G4G5 S2 T Schoenoplectus novae-angliae Salt-marsh Bulrush G5 S2 T Schoenoplectus novae-angliae Salt-marsh Bulrush G5 S2 T Silnee nivea Snowy Campion G47 S1 E Stellaria alsine Trailing Stitchwort G5 S1 E Stellaria alsine Trailing Stitchwort G5 S1 E Stellaria leonardii Sepatherush G5 S1 E Stellaria alsine Trailing Stitchwort G5 S1 E Stellarinum teretifolium Serpentine Aster G2 S1 E Stenanthium gramineum Featherbells S4G5 S1 T		Climbing Fern	G4	S2	Т
Matteuccia struthiopteris Ostrich Fern G5 S2 Myosotis macrosperma Large-seeded Forget-me-not G5 S2S3 Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polamisia dodecandra Clammyweed G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polamisia dodecandra Clammyweed G5 S1 E Polemonium vanbruntiae Jacob's-ladder G3G4 S2 T Polemonium vanbruntiae Jacob's-ladder G3G4 S2 T Polamogeton apinilus Large-leaved Pondweed G5 S1 E Potamogeton perfoliatus Clasping-leaved Pondweed G5 S1 E Potamogeton pusillus Slender Pondweed G5 S1 X Potamogeton pisillus Slender Pondweed G5 S1		g .	G5	S2	Т
Myosotis macrosperma Large-seeded Forget-me-not G5 \$2\$3 Panicum flexile Wiry Witch-grass G5 \$1 E Pedicularis lanceolata Swamp Lousewort G5 \$1 E Polanisia dodecandra Clammyweed G5 \$1 E Polemonium vanbruntiae Jacob's-ladder G3G4 \$2 T Polygala senega Seneca Snakeroot G4G5 \$2 T Potamogeton amplifolius Large-leaved Pondweed G5 \$1 X Potamogeton paroliatus Clasping-leaved Pondweed G5 \$1 E Potamogeton perfoliatus Clasping-leaved Pondweed G5 \$1 E Potamogeton pusillus Slender Pondweed G5 \$1 E Potamogeton pusillus Slender Pondweed G5 \$1 X Potamogeton pusillus Spiral Pondweed G5 \$1 X Potamogeton pusillus Spiral Pondweed G5 \$1 E Potamogeton pusillus Spiral Pondweed G5 \$1 E Quercus macrocarpa Mossy-cup O		Ostrich Fern	G5	S2	
Panicum flexile Wiry Witch-grass G5 S1 E Pedicularis lanceolata Swamp Lousewort G5 S1 E Polanisia dodecandra Clammyweed G5 S1 E Polemonium vanbruntiae Jacob's-ladder G3G4 S2 T Polygala senega Seneca Snakeroot G4G5 S2 T Potamogeton amplifolius Large-leaved Pondweed G5 SH X Potamogeton foliosus Leafy Pondweed G5 S1 E Potamogeton perfoliatus Clasping-leaved Pondweed G5 S1 Potamogeton perfoliatus Slender Pondweed G5 S1 Potamogeton pisillus Slender Pondweed G5 S1 Potamogeton richardsonii Redheadgrass G5 SH X Potamogeton spirillus Spiral Pondweed G5 S1 Potamogeton sopirillus Spiral Pondweed G5 S1 Potamogeton zosteriformis Flatstem Pondweed G5 S1 Potamogeton zosteriformis Flatstem Pondweed G5 S1 Potamogeton zosteriformis Flatstem Pondweed G5 S1 E Pycnanthemum verticillatum Whorled Mountain-mint G5 S1 E Ranunculus ambigens Water-plantain Spearwort G4 SH X Rhynchospora globularis Grass-like Beakrush G5? S1 E Sagittaria australis Long-beaked Arrowhead GNRQ SU Sagittaria calycina Spongy Lophotocarpus G5 S2 Salix humilis var. tristis Dwarf Prairie Willow G4G5 S1 Sanguisorba canadensis Canada Burnet G5 S2 Scutellaria leonardii Leonard's Skullcap G4T4 S2 T Schoenoplectus novae-angliae Snowy Campion G47 S1 E Scutellaria alsine Trailing Stitchwort G5 S1 E Stenanthium gramineum Featherbells G4G5 S1 T Symphyotrichum depauperatum Serpentine Aster G2 S1 E Stenanthium gramineum Serpentine Aster G2 S1 E		Large-seeded Forget-me-not	G5	S2S3	
Pedicularis lanceolataSwamp LousewortG5S1EPolanisia dodecandraClammyweedG5S1EPolemonium vanbruntiaeJacob's-ladderG3G4S2TPolygala senegaSeneca SnakerootG4G5S2TPotamogeton amplifoliusLarge-leaved PondweedG5SHXPotamogeton foliosusLeafy PondweedG5S1EPotamogeton perfoliatusClasping-leaved PondweedG5S1EPotamogeton pusillusSlender PondweedG5S1YPotamogeton pusillusSlender PondweedG5S1XPotamogeton pirchardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanusisorba canadensisCanada BurnetG5S2TSanusisorba canadensisCanada BurnetG5S2TScutell		•	G5	S1	Е
Polanisia dodecandraClammyweedG5S1EPolemonium vanbruntiaeJacob's-ladderG3G4S2TPolygala senegaSeneca SnakerootG4G5S2TPotamogeton amplifoliusLarge-leaved PondweedG5SHXPotamogeton foliosusLeafy PondweedG5S1EPotamogeton perfoliatusClasping-leaved PondweedG5S2Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2TSanguisorba canadensisCanada BurnetG5S2TSanguisorba canadensisCanada BurnetG5S2TScotellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellataSealG5S1EStenanthium gramineumFeatherbel	Pedicularis lanceolata	-	G5	S1	
Polemonium vanbruntiaeJacob's-ladderG3G4S2TPolygala senegaSeneca SnakerootG4G5S2TPotamogeton amplifoliusLarge-leaved PondweedG5SHXPotamogeton foliosusLeafy PondweedG5S1EPotamogeton perfoliatusClasping-leaved PondweedG5S2Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2TSalix humilis var. tristisDwarf Prairie WillowG4G5S1SSanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TSilene niveaSnowy Campion Star-flowered False Solomon's-sealG5S1ESmilacina stellataFatherbellsG4					
Polygala senegaSeneca SnakerootG4G5S2TPotamogeton amplifoliusLarge-leaved PondweedG5SHXPotamogeton foliosusLeafy PondweedG5S1EPotamogeton perfoliatusClasping-leaved PondweedG5S2Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- sealG5S1ESmilacina stellataSalG5S1EStenanthium gramineumFeatherbellsG4G5S1T	Polemonium vanbruntiae				Т
Potamogeton amplifoliusLarge-leaved PondweedG5SHXPotamogeton foliosusLeafy PondweedG5S1EPotamogeton perfoliatusClasping-leaved PondweedG5S2Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatum					Т
Potamogeton foliosusLeafy PondweedG5S1EPotamogeton perfoliatusClasping-leaved PondweedG5S2Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFame		Large-leaved Pondweed	G5	SH	Х
Potamogeton perfoliatusClasping-leaved PondweedG5S2Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- sealG5S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T </td <td>-</td> <td></td> <td></td> <td></td> <td></td>	-				
Potamogeton pusillusSlender PondweedG5S1Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- SealG5S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	_	-	G5	S2	
Potamogeton richardsoniiRedheadgrassG5SHXPotamogeton spirillusSpiral PondweedG5S1EPotamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- SealG5S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T					
Potamogeton spirillusSpiral PondweedG5S1Potamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- Star-flowered False Solomon's- SealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T		Redheadgrass	G5	SH	Х
Potamogeton zosteriformisFlatstem PondweedG5S1EPycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1ERanunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- sealG5S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	_	•	G5	S1	
Pycnanthemum verticillatumWhorled Mountain-mintG5S1EQuercus macrocarpaMossy-cup OakG5S1Ranunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T		•			Е
Quercus macrocarpaMossy-cup OakG5S1Ranunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	_	Whorled Mountain-mint	G5	S1	Е
Ranunculus ambigensWater-plantain SpearwortG4SHXRhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2TScutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T					
Rhynchospora globularisGrass-like BeakrushG5?S1ESagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2Scutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's-G4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	•	•	G4	SH	Χ
Sagittaria australisLong-beaked ArrowheadGNRQSUSagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2Scutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- sealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T			G5?	S1	Е
Sagittaria calycinaSpongy LophotocarpusG5S2Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2Scutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's-G4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T		Long-beaked Arrowhead	GNRQ	SU	
Salix humilis var. tristisDwarf Prairie WillowG4G5S1Sanguisorba canadensisCanada BurnetG5S2TSchoenoplectus novae-angliaeSalt-marsh BulrushG5S2Scutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- sealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	_	Spongy Lophotocarpus	G5	S2	
Schoenoplectus novae-angliaeSalt-marsh BulrushG5S2Scutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy CampionG4?S1ESmilacina stellataSealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	Salix humilis var. tristis	Dwarf Prairie Willow	G4G5	S1	
Scutellaria leonardiiLeonard's SkullcapG4T4S2TSilene niveaSnowy Campion Star-flowered False Solomon's- sealG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	Sanguisorba canadensis	Canada Burnet	G5	S2	Т
Silene niveaSnowy Campion Star-flowered False Solomon's- SealG4?S1ESmilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	Schoenoplectus novae-angliae	Salt-marsh Bulrush	G5	S2	
Star-flowered False Solomon's- Smilacina stellata seal G5 S1 E Stellaria alsine Trailing Stitchwort G5 S1 E Stenanthium gramineum Featherbells G4G5 S1 T Symphyotrichum depauperatum Serpentine Aster G2 S1 E Talinum teretifolium Fameflower G4 S1 T	Scutellaria leonardii	Leonard's Skullcap	G4T4	S2	Т
Smilacina stellatasealG5S1EStellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T	Silene nivea	Snowy Campion	G4?	S1	E
Stellaria alsineTrailing StitchwortG5S1EStenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T					_
Stenanthium gramineumFeatherbellsG4G5S1TSymphyotrichum depauperatumSerpentine AsterG2S1ETalinum teretifoliumFameflowerG4S1T					
Symphyotrichum depauperatum Serpentine Aster G2 S1 E Talinum teretifolium Fameflower G4 S1 T		-			
Talinum teretifolium Fameflower G4 S1 T	_				
rnaspium trirollatum Purple Meadow-parsnip G5 S1 E					
	ı naspium trifoliatum	Purpie ivieadow-parsnip	G5	51	E

Triadenum tubulosum	Large Marsh St. John's-wort	G4?	S1	
Trichophorum planifolium	Bashful Bulrush	G4G5	S2S3	
Trillium flexipes	Drooping Trillium	G5	S1	Е
Valeriana pauciflora	Valerian	G4	S1	Е
Viola blanda var. palustriformis	Large-leaved White Violet	G4G5T4T5	S1	

^{*} This report represents a compilation of information in the Wildlife and Heritage Service's Biological and Conservation Data system as of the date on the report. It does not include species considered to be "watchlist" or more common species.

3.3.2

USFWS Coordination

United States Department of the Interior

U.S. Fish & Wildlife Service Chesapeake Bay Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401 410/573 4575

SUBMITTED ELECTRONICALLY 9/22/2014

Online Certification Letter

Today's date: September 22, 2014

Project: The Maryland American Water Company

Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

Dear Applicant for online certification:

Thank you for using the U.S. Fish and Wildlife Service (Service) Chesapeake Bay Field Office online project review process. By printing this letter in conjunction with your project review package, you are certifying that you have completed the online project review process for the referenced project in accordance with all instructions provided, using the best available information to reach your conclusions. This letter, and the enclosed project review package, completes the review of your project in accordance with the Endangered Species Act of 1973 (16 U.S.C. 1531-1544, 87 Stat. 884), as amended (ESA). This letter also provides information for your project review under the National Environmental Policy Act of 1969 (P.L. 91-190, 42 U.S.C. 4321-4347, 83 Stat. 852), as amended. A copy of this letter and the project review package must be submitted to this office for this certification to be valid. This letter and the project review package will be maintained in our records.

Based on this information and in accordance with section 7 of the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.), we certify that except for occasional transient individuals, no federally proposed or listed endangered or threatened species are known to exist within the project area. Therefore, no Biological Assessment or further section 7 consultation with the U.S. Fish and Wildlife Service is required. Should project plans change, or if additional information on the distribution of listed or proposed species becomes available, this determination may be reconsidered.

This response relates only to federally protected threatened or endangered species under our jurisdiction. For additional information on threatened or endangered species in Maryland, you should contact the Maryland Wildlife and Heritage Division at (410) 260-8540. For information in Delaware you should contact the Delaware Natural Heritage and Endangered Species Program, at (302) 653-2880. For information in the District of Columbia, you should contact the National Park Service at (202) 535-1739.

The U.S. Fish and Wildlife Service also works with other Federal agencies and states to minimize loss of wetlands, reduce impacts to fish and migratory birds, including bald eagles, and restore habitat for wildlife. Information on these conservation issues and how development projects can avoid affecting these resources can be found on our website (www.fws.gov/chesapeakebay)

We appreciate the opportunity to provide information relative to fish and wildlife issues, and thank you for your interest in these resources. If you have any questions or need further assistance, please contact Chesapeake Bay Field Office Threatened and Endangered Species program at (410) 573-4527.

Sincerely,

Genevieve LaRouche Field Supervisor

August 27, 2014

US Fish and Wildlife Service Chesapeake Bay Ecological Services Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401

RE: Project Review Request

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

To whom it may concern:

GANNETT FLEMING, INC. P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

SUBMITTED ELECTRONICALLY 8/27/14

Gannett Fleming, Inc. (Gannett Fleming) is requesting a project review from the US Fish and Wildlife Service's Chesapeake Bay Ecological Services Field Office for a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting a project review to determine if any species of concern occur within or in close proximity to the study area.

Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC.

The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in

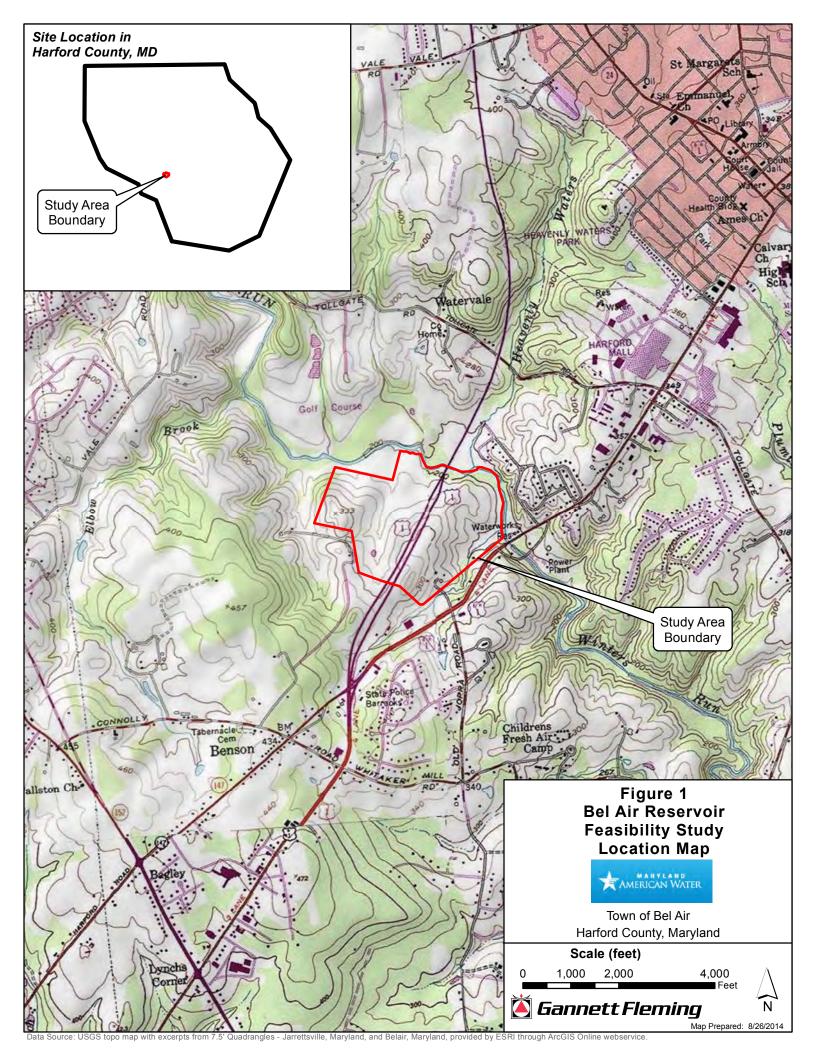
an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

The Information, Planning, and Conservation (IPaC) System indicated that no listed species, critical habitats, or national wildlife refuges were found within the vicinity of the proposed project. The IPaC System identified 13 migratory birds of concern that may be impacted. Three (3) National Wetlands Inventory wetland types were identified within the project study area, including freshwater forested/shrub wetland (PFO1A), freshwater pond (PUBHx), and riverine (R2UBH). Please refer to **Attachment 1** for the USGS topographic map of the study area. **Attachment 2** provides an aerial photograph of the project study area and **Attachment 3** provides the IPaC System Trust Resources List.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area as well as any conservation measures that should be implemented. We would appreciate an expedited review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci


Environmental Scientist

Attachments

Copies Furnished (electronically): S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist S. Smith, GF Environmental Scientist

File

Trust Resources List

This resource list is to be used for planning purposes only — it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

Chesapeake Bay Ecological Services Field Office 177 ADMIRAL COCHRANE DRIVE ANNAPOLIS, MD 21401 (410) 573-4599

Project Name:

Bel Air Reservoir Feasibility Study

Trust Resources List

Project Location Map:

Project Counties:

Harford, MD

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83):

MULTIPOLYGON (((-76.3774704 39.519473, -76.376612 39.5211613, -76.3759469 39.5208799, -76.3750885 39.5208634, -76.3745736 39.519953, -76.3732217 39.5201185, -76.3722776 39.5197047, -76.3702177 39.5198206, -76.3695739 39.5194399, -76.3692306 39.5187281, -76.3691877 39.5180329, -76.3690804 39.5174039, -76.3693808 39.5162783, -76.3690589 39.5156161, -76.3757069 39.5123041, -76.3772133 39.5133644, -76.3801487 39.5142417, -76.3804985 39.5165925, -76.383288 39.5171884, -76.3815724 39.5204824, -76.3774704 39.519473)))

Trust Resources List

Project Type:

Dam

Endangered Species Act Species List (<u>USFWS Endangered Species Program</u>).

There are no listed species found within the vicinity of your project.

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (<u>USFWS National Wildlife Refuges Program</u>).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (<u>USFWS Migratory Bird Program</u>).

The protection of birds is regulated by the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA). Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. For more information regarding these Acts see http://www.fws.gov/migratorybirds/RegulationsandPolicies.html.

All project proponents are responsible for complying with the appropriate regulations protecting birds when planning and developing a project. To meet these conservation obligations, proponents should identify potential or existing project-related impacts to migratory birds and their habitat and develop and implement conservation measures that avoid, minimize, or compensate for these impacts. The Service's Birds of Conservation Concern (2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

For information about Birds of Conservation Concern, go to http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/BCC.html.

Trust Resources List

Migratory birds of concern that may be affected by your project:

There are 13 birds on your Migratory birds of concern list. The Division of Migratory Bird Management is in the process of populating migratory bird data with an estimated completion time of Fall 2014; therefore, the list below may not include all the migratory birds of concern in your project area at this time. While this information is being populated, please contact the Field Office for information about migratory birds in your project area.

Species Name	Bird of Conservation Concern (BCC)	S p e c i e s Profile	Seasonal Occurrence in Project Area
American bittern (Botaurus lentiginosus)	Yes	species info	Wintering
Bald eagle (Haliaeetus leucocephalus)	Yes	species info	Year-round
Black-billed Cuckoo (Coccyzus erythropthalmus)	Yes	species info	Breeding
cerulean warbler (Dendroica cerulea)	Yes	species info	Breeding
Golden-Winged Warbler (Vermivora chrysoptera)	Yes	species info	Breeding
Least Bittern (Ixobrychus exilis)	Yes	species info	Breeding
Marbled Godwit (Limosa fedoa)	Yes	species info	Wintering
Pied-billed Grebe (Podilymbus podiceps)	Yes	species info	Breeding
Purple Sandpiper (Calidris maritima)	Yes	species info	Wintering
Rusty Blackbird (Euphagus carolinus)	Yes	species info	Wintering
Short-billed Dowitcher (Limnodromus griseus)	Yes	species info	Wintering
Wood Thrush (Hylocichla mustelina)	Yes	species info	Breeding
Worm eating Warbler (Helmitheros vermivorum)	Yes	species info	Breeding

Trust Resources List

NWI Wetlands (<u>USFWS National Wetlands Inventory</u>).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers District</u>.

Data Limitations, Exclusions and Precautions

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery and/or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Exclusions - Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Precautions - Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the

Trust Resources List

advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

The following wetland types intersect your project area in one or more locations:

Wetland Types	NWI Classification Code	Total Acres
Freshwater Forested/Shrub Wetland	PFO1A	1.7732
Freshwater Pond	<u>PUBHx</u>	0.1999
Riverine	R2UBH	61.948

August 27, 2014

US Fish and Wildlife Service Chesapeake Bay Ecological Services Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401

RE: Project Review Request

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

To whom it may concern:

GANNETT FLEMING, INC. P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

SUBMITTED ELECTRONICALLY 8/27/14

Gannett Fleming, Inc. (Gannett Fleming) is requesting a project review from the US Fish and Wildlife Service's Chesapeake Bay Ecological Services Field Office for a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting a project review to determine if any species of concern occur within or in close proximity to the study area.

Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC.

The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in

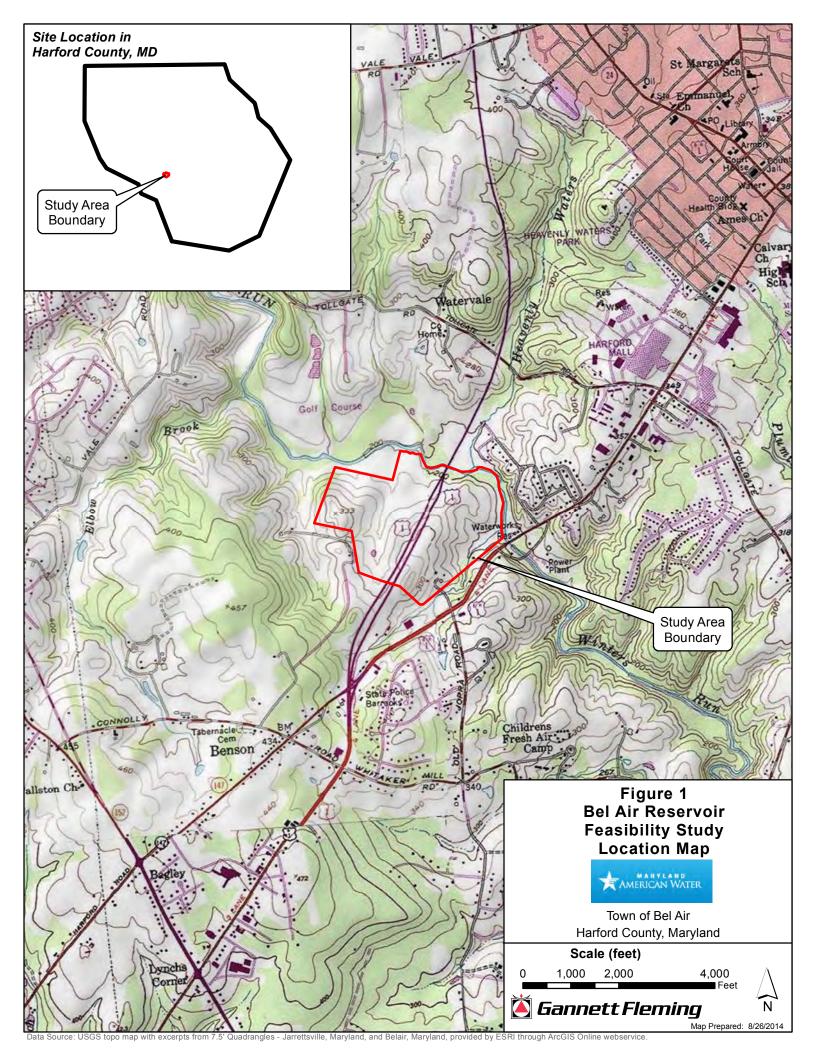
an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

The Information, Planning, and Conservation (IPaC) System indicated that no listed species, critical habitats, or national wildlife refuges were found within the vicinity of the proposed project. The IPaC System identified 13 migratory birds of concern that may be impacted. Three (3) National Wetlands Inventory wetland types were identified within the project study area, including freshwater forested/shrub wetland (PFO1A), freshwater pond (PUBHx), and riverine (R2UBH). Please refer to **Attachment 1** for the USGS topographic map of the study area. **Attachment 2** provides an aerial photograph of the project study area and **Attachment 3** provides the IPaC System Trust Resources List.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area as well as any conservation measures that should be implemented. We would appreciate an expedited review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci


Environmental Scientist

Attachments

Copies Furnished (electronically): S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist S. Smith, GF Environmental Scientist

File

Trust Resources List

This resource list is to be used for planning purposes only — it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

Chesapeake Bay Ecological Services Field Office 177 ADMIRAL COCHRANE DRIVE ANNAPOLIS, MD 21401 (410) 573-4599

Project Name:

Bel Air Reservoir Feasibility Study

Trust Resources List

Project Location Map:

Project Counties:

Harford, MD

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83):

MULTIPOLYGON (((-76.3774704 39.519473, -76.376612 39.5211613, -76.3759469 39.5208799, -76.3750885 39.5208634, -76.3745736 39.519953, -76.3732217 39.5201185, -76.3722776 39.5197047, -76.3702177 39.5198206, -76.3695739 39.5194399, -76.3692306 39.5187281, -76.3691877 39.5180329, -76.3690804 39.5174039, -76.3693808 39.5162783, -76.3690589 39.5156161, -76.3757069 39.5123041, -76.3772133 39.5133644, -76.3801487 39.5142417, -76.3804985 39.5165925, -76.383288 39.5171884, -76.3815724 39.5204824, -76.3774704 39.519473)))

Trust Resources List

Project Type:

Dam

Endangered Species Act Species List (<u>USFWS Endangered Species Program</u>).

There are no listed species found within the vicinity of your project.

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (<u>USFWS National Wildlife Refuges Program</u>).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (<u>USFWS Migratory Bird Program</u>).

The protection of birds is regulated by the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA). Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. For more information regarding these Acts see http://www.fws.gov/migratorybirds/RegulationsandPolicies.html.

All project proponents are responsible for complying with the appropriate regulations protecting birds when planning and developing a project. To meet these conservation obligations, proponents should identify potential or existing project-related impacts to migratory birds and their habitat and develop and implement conservation measures that avoid, minimize, or compensate for these impacts. The Service's Birds of Conservation Concern (2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

For information about Birds of Conservation Concern, go to http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/BCC.html.

Trust Resources List

Migratory birds of concern that may be affected by your project:

There are 13 birds on your Migratory birds of concern list. The Division of Migratory Bird Management is in the process of populating migratory bird data with an estimated completion time of Fall 2014; therefore, the list below may not include all the migratory birds of concern in your project area at this time. While this information is being populated, please contact the Field Office for information about migratory birds in your project area.

Species Name	Bird of Conservation Concern (BCC)	S p e c i e s Profile	Seasonal Occurrence in Project Area
American bittern (Botaurus lentiginosus)	Yes	species info	Wintering
Bald eagle (Haliaeetus leucocephalus)	Yes	species info	Year-round
Black-billed Cuckoo (Coccyzus erythropthalmus)	Yes	species info	Breeding
cerulean warbler (Dendroica cerulea)	Yes	species info	Breeding
Golden-Winged Warbler (Vermivora chrysoptera)	Yes	species info	Breeding
Least Bittern (Ixobrychus exilis)	Yes	species info	Breeding
Marbled Godwit (Limosa fedoa)	Yes	species info	Wintering
Pied-billed Grebe (Podilymbus podiceps)	Yes	species info	Breeding
Purple Sandpiper (Calidris maritima)	Yes	species info	Wintering
Rusty Blackbird (Euphagus carolinus)	Yes	species info	Wintering
Short-billed Dowitcher (Limnodromus griseus)	Yes	species info	Wintering
Wood Thrush (Hylocichla mustelina)	Yes	species info	Breeding
Worm eating Warbler (Helmitheros vermivorum)	Yes	species info	Breeding

Trust Resources List

NWI Wetlands (<u>USFWS National Wetlands Inventory</u>).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers District</u>.

Data Limitations, Exclusions and Precautions

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery and/or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Exclusions - Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Precautions - Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the

Trust Resources List

advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

The following wetland types intersect your project area in one or more locations:

Wetland Types	NWI Classification Code	Total Acres
Freshwater Forested/Shrub Wetland	PFO1A	1.7732
Freshwater Pond	<u>PUBHx</u>	0.1999
Riverine	R2UBH	61.948

3.3.3

Phase I Bog Turtle Report

PHASE I BOG TURTLE HABITAT SURVEY REPORT

Bel Air Impoundment Project Bel Air, Harford County, Maryland

Prepared for:
Maryland American Water Company

Prepared by:

November 2015

PHASE I BOG TURTLE HABITAT SURVEY REPORT

Bel Air Impoundment Project

Bel Air, Harford County, Maryland

Prepared for:

Maryland American Water Company

Prepared by:

November 2015

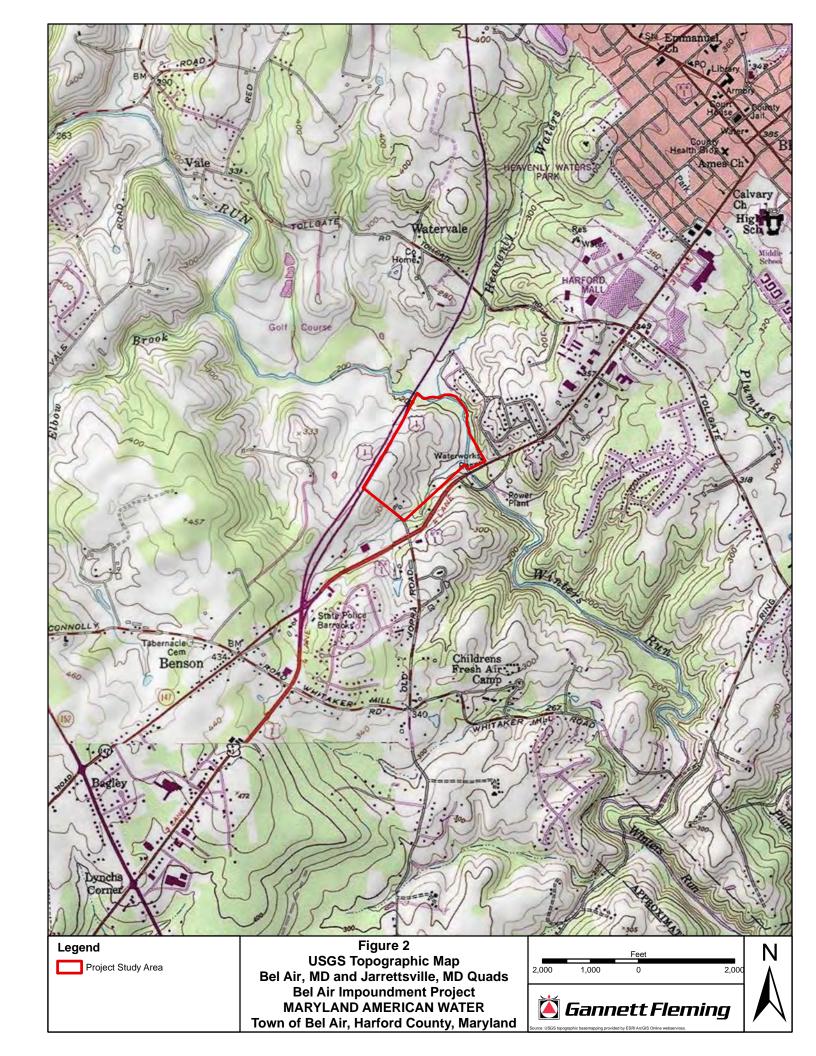
TABLE OF CONTENTS

1.0	Project Description	1
2.0	Purpose	1
3.0	Methods	4
	3.1 Resource Information Review	4
	3.2 Bog Turtle Natural History	4
	3.3 Phase I Habitat Assessment Surveys	5
	3.3.1 Wetland Delineation	5
	3.3.2 Habitat Assessment	5
4.0	Phase I Habitat Assessment Results	6
5.0	Summary	7
6.0	References	8
7.0	List of Contributors	0
	<u>FIGURES</u>	
Figure	e 1 Project Location and Study Area Map	2
Figure	2 USGS Topographic Map	3
	TABLES	
Table	1 Wetland Size and Location	5
Table	2 Summary of Phase I Survey Results	6
	<u>APPENDICES</u>	
APPE	NDIX A – WETLANDS AND WATERWAYS MAPPING	
APPE	NDIX B – PHASE 1 BOG TURTLE HABITAT EVALUATION FIELD FORM	
APPE	NDIX C – PHOTOGRAPHS	
APPE	NDIX D – PROJECT ENVIRONMENTAL REVIEW LETTERS	

1.0 Project Description

Maryland American Water Company (MAWC) is proposing to construct an off-stream raw water storage reservoir to serve the Town of Bel Air. The proposed project requires a raw water intake structure on Winters Run and associated pipeline crossings on Winters Run to connect the existing Winters Run Water Treatment Plant (WTP). Construction for this project is proposed in an upland field currently used as agricultural land. The connecting infrastructure between the impoundment and the plant will need to cross Winters Run and its floodplain.

The existing Bel Air water system is supplied primarily from the existing Winters Run Water Treatment Plant (2.0 MGD nominal capacity) that treats water from Winters Run. The Winters Run withdrawal is permitted by the Maryland Department of the Environment (MDE) at 1.4 MGD, annual average. The MAWC water system is also supplemented by water supply wells. Finally, MACW has an agreement with Harford County for a 0.5 MGD supply through an existing metered interconnection.


When stream flow drops below the minimum pass-by flow stipulated by MDE, water cannot be withdrawn by the water treatment plant. During such times historically, the Harford County has allowed the MAWC system to take water in excess of the agreement amount to meet system demands. The County is now facing projected long-term supply shortfalls and has alerted MAWC that they can no longer commit to supplemental supply. As a result, the MAWC identified and evaluated a number of options for a supplemental supply.

In working with Harford County and MDE to evaluate supply alternatives, the County identified a County-owned parcel adjacent to Winters Run, upstream of the Winters Run Water Treatment Plant that could potentially be used for construction of an off-stream storage reservoir. The reservoir would be purchased by MAWC and used to supply the WTP when withdrawal from the stream is restricted or prohibited. The reservoir would be refilled from the stream when flows are sufficient to meet both the supply needs and the refill rates.

2.0 Purpose

The purpose of this report is to present the results of a survey conducted for bog turtle (*Glyptemys muhlenbergii*) habitat within wetlands identified within the project study area. **Figure 1** depicts the project location and study area on an aerial map. **Figure 2** depicts the project study area on an excerpt of USGS Topographic Maps (Bel Air and Jarrettsville, MD). This report specifically addresses a habitat assessment (referred to as Phase I survey) that was conducted to identify potential bog turtle habitat within the project study area. Previous consultations were initiated with the MDNR Wildlife and Heritage Service and the USFWS Chesapeake Bay Field Office (CBFO) on August 27, 2014 to identify potential species of concern within the project study area, and aid in jurisdictional agency coordination to avoid potential environmental impacts. No records of rare, threatened or endangered species were identified within the study area boundaries by USFWS CBFO or MDNR Wildlife and Heritage Service.

3.0 Methods

3.1 Resource Information Review

Prior to conducting the field surveys, Gannett Fleming reviewed the following background information to determine the potential extent of bog turtle habitat within the Project area:

- 1. U.S. Geological Survey (USGS) topographic quadrangles;
- 2. Aerial photographs;
- 3. National Wetland Inventory (NWI) mapping.

According to the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps (Bel Air and Jarrettsville, MD), the elevation of the project site is approximately between 180 and 320 feet above mean sea level (amsl). The project study area's highest elevation is approximately 320 feet amsl in the southwest corner of the agricultural field. The project study area's lowest elevation is approximately 180 feet amsl at Winters Run. A Project Location and Study Area Map is provided as **Figure 1**. An excerpt from the USGS Topographic Quadrangle Maps is provided as **Figure 2**.

In addition, the biology and habitat requirements of the bog turtle were reviewed to provide a comparison with the habitat conditions present within the project study area. A summary of the natural history of bog turtle is provided below.

3.2 Bog Turtle Natural History

The bog turtle was listed as federally-threatened by the US Fish and Wildlife Service (USFWS) in 1997 pursuant to the Endangered Species Act of 1973 (87 Stat. 884 as amended; 16 U.S.C. 1531 et seq.), and is listed as state-threatened in Maryland. The listing status is based on significant population declines due to factors including habitat loss, habitat degradation, and poaching. The bog turtle is the smallest, native North American freshwater turtle, with average sizes (adult carapace length) ranging from 82-99 millimeters (Carr 1952). The carapace ranges in color from light brown to black, which sometimes exhibits a "tortoiseshell" pattern, and the hinge-less plastron is brown or black with contrasting light yellow areas. The bog turtle's skin is generally brown and may be flecked with red-orange. The most distinguishing characteristic is the large orange patch on both sides of the head and neck (Behler 1989, Ernst et. al. 1994).

The bog turtle is an omnivore, eating a variety of food sources including insects, berries, seeds, insect larvae, snails, frogs, slugs, salamanders, earthworms, and small mammals (Ernst et. al. 1994). Bog turtles inhabit open, generally spring-fed wet meadows and sphagnum bogs with standing or slow-moving shallow water over a mucky substrate. Bog turtles prefer areas with good sunlight, high evaporation rates, high humidity in the near-ground microclimate, and perennial saturation of portions of the ground (Bourg, 1992).

Bog turtles emerge from hibernation as early as March and are most active in the spring (Ernst 1977, Ernst et. al. 1994). Bog turtles mate in the spring (May to June), and lay a single clutch of three to four eggs. The nesting season lasts from June to July, approximately 21-31 days after copulation (Ernst et. al. 1994). Nests are placed in the top of sedge hummocks of sedge or on top of sphagnum in open, sunny areas. After an incubation period of 42 to 56 days, hatchlings emerge in August or September, or may over-winter in nests in northern localities and emerge in April or

May. As temperatures increase in the summer months bog turtles may aestivate for a short period of time or become subterranean, congregating in wetter areas and inhabiting tunnels and burrows. Bog turtles return to winter hibernation sites during the months of October to November (Ernst et. al. 1994).

3.3 Phase I Habitat Assessment Surveys

This section discusses the methods used for the Phase I bog turtle habitat survey in the project study area. Survey methodology followed the "Guidelines for Bog Turtle Surveys" authored by the USFWS and found within the Bog Turtle Northern Population Recovery Plan (USFWS, revised 2006).

3.3.1 Wetland Delineation

Concurrent to the habitat assessment, a wetland delineation was conducted by Gannett Fleming within the project study area. No NWI features were mapped in the project study area, however during field surveys of the project study areas, two palustrine emergent wetlands were observed and delineated in accordance with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0* (U.S. Army Corps of Engineers, 2012). All wetlands within the project study area were identified and delineated on September 29-30, 2015. Wetland information is summarized in Table 1.

Is the entire Wetland Wetland Size Latitude/Longitude wetland on ID (acres) site? W10.161 39.517021, -76.368708 No 1.872 39.515005, -76.371984 W2 Yes

Table 1 Wetland Size and Location

3.3.2 Habitat Assessment

A Phase I survey for bog turtle habitat was also conducted on September 29-30, 2015 on all wetlands within the 82.18 acres project study area. The location of the wetlands were delineated and depicted on the aerial maps provided in **Appendix A**. The USFWS's habitat assessment field form was completed for the wetlands as part of the assessment and provided in **Appendix B**. Representative photographs are located in **Appendix C**. The survey discussed in this report was conducted by Autumn Thomas (MD Qualified Bog Turtle Surveyor and Environmental Scientist) and Samantha Hockenberry (Environmental Scientist) who performed the wetland delineation and have extensive hands-on experience and training regarding bog turtle habitat and surveying techniques. The initial project environmental review letters and responses are provided as **Appendix D**.

Potential bog turtle habitat is recognized by three criteria, which are suitable hydrology, suitable soils, and suitable vegetation. Suitable hydrology includes some or all of the following: springs, shallow surface water, persistently saturated soils, subsurface flow, and rivulets; a groundwater component is important. Suitable soils, which are the critical criterion, include a bottom substrate of soft muck. The term "muck" does not refer to a technical soil type; it can be soft deep peat or

mineral mud. Suitable vegetation includes dominant vegetation of low grasses and sedges, possibly a scrub-shrub wetland component, and a relatively open canopy.

4.0 Phase I Habitat Assessment Results

This section discusses the results of the Phase I bog turtle habitat assessment. A summary of Phase I survey results is included in Table 2. Detailed information about each wetland follows the table. Field forms and site photographs are provided in Appendix A and Appendix B, respectively.

Wetland ID	Wetland Size (acres)	Wetland Type & Amount (% or acres)	Extent of "Mucky" Soils (by wetland type)	Survey Effort (in person-hrs)	Bog Turtle Habitat?
W1	0.161	PEM – 100%	PEM – 0%	2	No
W2	1.872	PFM _ 100%	PFM _ 80%	2	Vec

Table 2 Summary of Phase I Survey Results

Wetland 1 (W1)

Wetland 1 is a PEM wetland located along the north-northwest property and study area boundary behind the water treatment plant. The wetland receives hydrology as drainage from the surrounding upland forested slope and is primarily a sparsely-vegetated, toe-slope, linear depression in the Winters Run floodplain. Dominant wetland vegetation within this wetland consisted of skunk cabbage (*Symplocarpus foetidus*), multiflora rose (*Rosa multiflora*) and Japanese stilt grass (*Microstegium vimineum*). Other vegetation at the time of survey included sedges (*Carex* spp.), Pennsylvania smartweed (*Persicaria pensylvanica*), swamp smartweed (*Persicaria hydropiperoides*), arrow-leaf tearthumb (*Persicaria sagittata*), red maple (*Acer rubrum*), spicebush (*Lindera benzoin*), and slippery elm (*Ulmus rubra*). The dominant vegetation in this emergent wetland consists of two invasive species, and the overall lack of vegetation in the majority of the wetland does not provide suitable protection or habitat for bog turtles. While saturated soils were observed and appear to persist year-round, no springs or seeps were observed and no shallow surface water in the form of small puddles or rivulets were observed. Due to the abundance of invasive plant species, lack of groundwater influence, and lack of mucky soils, this wetland is not suitable bog turtle habitat.

Wetland 2 (W2)

Wetland 2 is a PEM wetland located downslope of an agricultural field and within the floodplain of an UNT to Winters Run. The wetland receives hydrology from a spring house and several springs located on the upslope edge of wetland, as well as drainage from the surrounding agricultural field. Dominant vegetation within this wetland consisted of broad-leaf cat-tail (*Typha latifolia*), orange touch-me-not (*Impatiens capensis*), sensitive fern (*Onoclea sensibilis*), arrowleaf tearthumb, and reed canary grass (*Phalaris arundinacea*). Other vegetation observed during the survey included sedges, rushes, single-vein sweetflag (*Acorus calamus*), rice cutgrass (*Leersia oryzoides*), and multiflora rose.

Several flowing seeps and springs were observed on the upslope edge of the wetland. A spring house was observed on the southwestern corner of the wetland. Numerous rivulets were observed

Phase I Bog Turtle Habitat Survey Report Bel Air Impoundment Project Bel Air, Harford County

throughout the wetland and several were delineated as drainage features into the UNT to Winters Run that abuts the eastern edge of the wetland. Several small puddles with standing water up to three inches deep were observed during the survey. Over 80% of this wetland exhibited mucky soils at least three inches deep and most of the mucky parts could be probed up to eight inches deep.

This wetland exhibits key habitat criteria that would render them suitable for bog turtles in regards to vegetation, hydrology and soil type. Therefore, this wetland was determined to have potential bog turtle.

5.0 Summary

Field investigations conducted by Gannett Fleming on September 29-30, 2015, identified and delineated wetlands and waterways in conjunction with the Bel Air Reservoir Project. Two palustrine emergent wetlands, were identified and delineated within the project study area and surveyed for potential bog turtle habitat. Wetland 2 (W2) does exhibit all three criteria for potential habitat, pending agency concurrence and final design impacts, it may require a Phase II presence/absence survey for bog turtle. No bog turtles were observed during the Phase I surveys. Frogs were observed in wetland W2 during the survey.

- Wetland 1 (W1): PEM, 0.161 ac., no suitable habitat present
- Wetland 2 (W2): PEM, 1.872 ac., suitable habitat is present

6.0 References

- Behler, John L. 1989. The Audubon Society Field Guide to North American Reptiles and Amphibians. Alfred A. Knopf, New York.
- Bourg, N.A. 1992. Status of the Bog Turtle (*Clemmys muhlenbergii*) in North America. Eastern Heritage Task Force of the Nature Conservancy, Middletown, Pennsylvania. Report to the U.S.Fish and Wildlife Service.
- Brown, Lauren. 1979. Grasses, an Identification Guide. Houghton Mifflin Company. New York.
- Carr, Archie. 1952. Handbook of Turtles: The Turtles of the United States, Canada, and Baja California. Cornell University Press, New York.
- Conant, R. and Collins, J.T. 1991. Reptiles and Amphibians of Eastern/Central North America (Peterson Field Guides) Third Edition. Houghton Mifflin Company, New York.
- Ernst, Carl H. 1977. Biological notes on the bog turtle, *Clemmys muhlenbergii*. Herpetologica 33:241-246.
- Ernst, Carl H., Roger W. Barbour, and Jeffrey E. Lovich. 1994. Turtles of the United States and Canada. Smithsonian Institution Press, Washington.
- United States Code (87 Stat. 884 as amended; 16 U.S.C. 1531 et seq.). The Endangered Species Act of 1973.
- United States Fish and Wildlife Service (USFWS). 1997. Final Rule to List the Northern Population of the Bog Turtle as Threatened and the Southern Population as Threatened due to Similarity of Appearance. 50 CFR, Part 17. Federal Register, Vol. 62, No. 213, pp. 59605-59623.USFWS, 2001.
- USFWS. 2001, revised 2006. Bog Turtle (*Clemmys muhlenbergii*), Northern Population Recovery Plan. USFWS Region 5, Hadley, Massachusetts.
- Cowardin, L.M., F.C. Goblet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. Washington, D.C.: U.S. Department of Interior. Fish and Wildlife Service, 1979.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. Technical Report Y-87-1.
- ESRI ArcGIS Online Webservices. 2014. *Topographic Map 7.5' Quadrangles, Bel Air and Jarrettsville, MD.* Accessed October 5, 2015. Available online at https://doc.arcgis.com/en/arcgis-online/reference/arcgis-server-services.htm
- Newcomb, Lawrence. 1977. Newcomb's Wildflower Guide. Little, Brown and Company.

- U.S. Fish and Wildlife Service. National Wetlands Inventory Wetlands Mapper. Accessed or October 5-6, 2015. Available online at http://www.fws.gov/wetlands/Data/mapper.html
- U.S. Army Corps of Engineers. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region Version 2.0, ed. J. F. Berkowitz, J. S. Wakeley, R. W. Lichvar, C. V. Noble. ERDC/EL TR-12-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Army Corps of Engineers. 2014. National Wetland Plant List, version 3.2. http://wetland_plants.usace.army.mil/. U.S. Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH.

7.0 List of Contributors

David H. Graff, Senior Environmental Scientist, QA/QC

Professional Experience: 17 years

Education: B.S., Environmental Studies

M.A.Ed., Environmental Studies

38 Hour U.S. Army Corps of Engineers Wetland Delineator Certification Training

Habitat Evaluation Procedures (HEP) Certified

Professional Wetland Scientist, (PWS) No. 001385, Society of Wetland Scientists

Certified Senior Ecologist (CSE), Ecological Society of America

Certified Wildlife Biologist (CWB), The Wildlife Society

Autumn M. Thomas, Senior Environmental Scientist

Professional Experience: 16 years

Education: B.S., Environmental Science and Natural Resources Biology

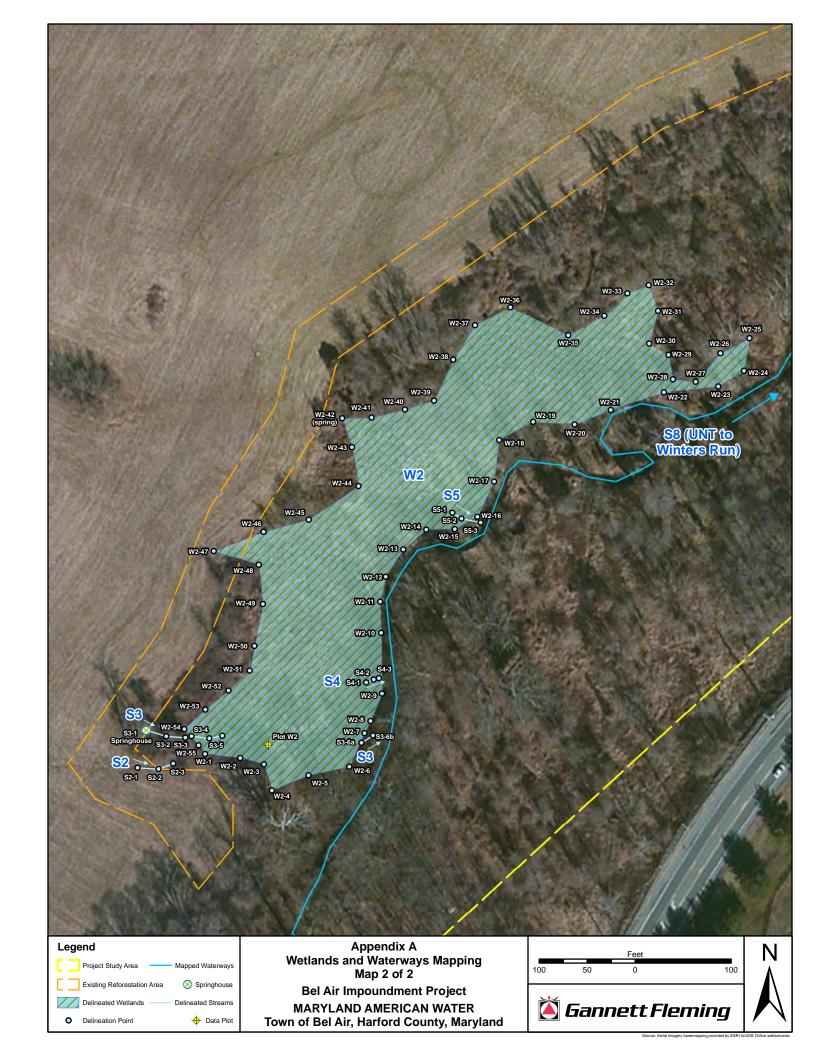
Rutgers Wetland Delineation Certificate Series

Regional Supplement to the Corps of Engineers Wetland Delineation Manual Update Workshop

USFWS & MDNR Recognized, Qualified Bog Turtle Surveyor

Samantha R. Hockenberry, Environmental Scientist

Professional Experience: 2 year Education: B.S., Biology


M.S., Biology

36 Hour Swamp School Wetland Delineation & Regional Supplement Training Society of Freshwater Science Taxonomic Certification to Family Level for Aquatic Insects Certified Associate Ecologist (CAE), Ecological Society of America

APPENDIX A WETLANDS AND WATERWAYS MAPPING

APPENDIX B PHASE I BOG TURTLE HABITAT EVALUATION FIELD FORM

USFWS/PFBC Bog Turtle Habitat Evaluation Field Form (revised 06/01/2006)

Project/Property Name: 059267 MAWC Reservoir Study			
Project type: Proposed upland storage reservoir and treament plant upgrades			
Applicant/Landowner Name: Maryland-American Water			
County: Harford Quad: Jarrettsville & Bel Air Township/Municipality: Bel Air			
PNDI # n/a Potential conflict with USFWS species? ▼Y ■N			
ACTION AREA ² Action area size: $\frac{\text{approx. 70 acres}}{\text{Does the Phase I survey include }}$ Wetlands in the action area? \boxed{X} \boxed{Y} \boxed{N} ³			
WETLAND ID: W1 PHOTOS TAKEN: ▼Y N WETLAND SIZE: 0.161 acres Wetland size estimation: If actual acreage is not known at time of investigation, check one: Solution Solution			
WETLAND LOCATION: Lat 39.517493 Long76.368925 (approximate center of wetland) GPS Datum (check one): ■NAD 27 ■NAD 83 ▼ WGS 84			
SURVEY CONDITIONS & LIMITATIONS			
Date of survey: 09/29/15 Time In: 10:00 Time Out: 11:00 Last precipitation: 24 hours			
How much of the wetland is located <i>off-site</i> (i.e., outside the property boundaries or right-of-way)? none of it – the entire wetland is within the property boundaries (skip next 2 questions) some of it –acres or5% of the wetland appears to be located off-site			
If part of this wetland continues off-site, how much of the <i>off-site portion</i> was surveyed (on foot)? none of it all of it part of it (at least% of it or acres of the off-site portion)			
How much of the <i>off-site portion</i> of the wetland is visible (e.g., from the subject property or from a public road)? X all of it part of it (at least% of it or acres) none of it			
Are there any wetlands located <i>off-site</i> and close enough to be affected by this project? TY N Unknown If yes, <i>could</i> they be potential bog turtle habitat? TY N Unknown			
Describe surrounding landscape (wetlands, forest, subdivision, agricultural field, fallow field, etc.): Winters Run, upland forest, water treatment plant			
WETLAND CHARACTERISTICS			
Wetland type(s) present and % cover: PEM 100 PSS PFO PFO POW POW			
Y \(\backsquare \) Are there any signs of disturbance to \(\text{hydrology} \) (ditching, filling, ponds, roads, etc.)? If yes, describe: \(\text{Ditched & bermed} \)			
Y N Are there any signs of disturbance to <i>vegetation</i> (mowing, pasturing, burning, etc.)? If yes, describe:			
Hydrology			
☐ Y ☒ N Springs or seeps ☐ visible ☐ likely? Watercress present? ☐ Yes ☒ No			
N Spring houses in or adjacent to wetland?			
Y N Rivulets present? If yes, average depth inches.			
X			
☐ Y ☑ N Water visible on surface? Check all that apply: ☐ small puddles/depressions ("deep)			
□ rivulets (" deep) □ larger pools/ponds ("deep) Evidence of flooding? If yes, describe indicators wrack lines, areas of concentrated flow			

Project Name	Maryland-American Water	Wet	land <u>W1</u> (cont.)
	g Unit (optional): ions confirm mapped type?	NO U nknown	
Soils - PEM F	Portion of Wetland		
Mucky⁴? ☐YES ■NO	How much of it (PEM) is mucky ? ☐ <10% ☐ 10-29% ☐ 30-49% ☐ 50-70% ☐ >70%	Mucky soils range in depth from:to"	Most of the mucky part(s) the wetland can be probed ⁵ : ☐ 3-5" ☐ 6-8" ☐ 9-11" ☐ ≥12
Non-mucky ⁶ ? ■YES □NO	How much of it (PEM) is non-mucky ? □ <10% □ 10-29% □ 30-49% □ 50-70% ▼ >70%		
Soils – PSS an	nd/or PFO Portions of Wetland		
Mucky⁴? ☐YES ☐NO	How much of it is mucky ? □ <10% □ 10-29% □ 30-49% □ 50-70% □ >70%	Mucky soils range in depth from:to"	Most of the mucky part(s) the wetland can be probed ⁵ : \square 3-5" \square 6-8" \square 9-11" \square \geq 12"
	tation (characterize the wetland as a weesent (≥ 5% aereal coverage), and also ci	•	20% coverage).
☐ sensitive ferr ☐ alder ☐ dogv	shes skunk cabbage cattail sweet in rice cutgrass tearthumb preed car wood red maple willow poison suinant species: spicebush, slippery elm, smartweet	nary grass 🗌 <i>Phragmi</i> umac 🕱 multiflora ros	ites ☐ purple loosestrife
Other herptiles	urtles observed? □ YES ⁷ ■ NO If godserved □ previously observed: □ mments/Observations: (use additional states)	· · · · · · · · · · · · · · · · · · ·	
INVESTIGAT	O UNSURE The soils criterion for UNSURE The vegetation criterion	or bog turtle habitat is on for bog turtle hab	met. itat is met.
I certify that to	the best of my knowledge, all of the infor	rmation provided here	ein is accurate and complete.
Autumn M. Thomas	Autu	MM_	09/29/15
Investigator's N		or's Signature	Date

USFWS/PFBC Bog Turtle Habitat Evaluation Field Form (revised 06/01/2006)

Project/Property Name: 059267 MAWC Reservoir Study					
Project type: Proposed upland storage reservoir and treament plant upgrades					
Applicant/Landowner Name: Maryland-American Water					
County: Harford Quad: Jarrettsville & Bel Air Township/Municipality: Bel Air					
PNDI #_n/a Potential conflict with USFWS species? ▼Y □N					
ACTION AREA ² Action area size: approx. 70 acres Does the Phase I survey include all wetlands in the action area? \(\overline{X}\)Y\(\overline{N}^3\)					
Action area size: approx. 70 acres Does the Phase I survey include all wetlands in the action area? $XY \square N^3$					
WETLAND ID: W2 PHOTOS TAKEN: ∑Y ☐N WETLAND SIZE: 1.872 acres Wetland size estimation: If actual acreage is not known at time of investigation, check one: — <0.1 acre ☐ 0.1 to 0.5 acre ☐ >0.5 to <1 acre ∑ 1-2 acres ☐ 2-4 acres ☐ 5+ acres ☐ 10+ acres					
WETLAND LOCATION: Lat 39.514953 Long76.372112 (approximate center of wetland) GPS Datum (check one): NAD 27 NAD 83 WGS 84					
SURVEY CONDITIONS & LIMITATIONS					
Date of survey: 09/30/15 Time In: 07:30 Time Out: 08:30 Last precipitation: <a href="mailto:x<24">X<24 hours 1-7 days >1 week unknown Drought conditions? <a href="mailto:Y<Y">Y N X Unknown					
How much of the wetland is located <i>off-site</i> (i.e., outside the property boundaries or right-of-way)? In none of it – the entire wetland is within the property boundaries (skip next 2 questions) In some of it –					
If part of this wetland continues off-site, how much of the <i>off-site portion</i> was surveyed (on foot)? none of it all of it part of it (at least% of it or acres of the off-site portion)					
How much of the <i>off-site portion</i> of the wetland is visible (e.g., from the subject property or from a public road)? all of it part of it (at least% of it or acres) _ none of it					
Are there any wetlands located <i>off-site</i> and close enough to be affected by this project? The Unknown If yes, <i>could</i> they be potential bog turtle habitat? The Unknown					
Describe surrounding landscape (wetlands, forest, subdivision, agricultural field, fallow field, etc.): UNT Winters Run, agricultural field					
WETLAND CHARACTERISTICS					
Wetland type(s) present and % cover: PEM 100 PSS PFO PFO POW					
\square Y \boxtimes N Are there any signs of disturbance to <i>hydrology</i> (ditching, filling, ponds, roads, etc.)? If yes, describe:					
Y N Are there any signs of disturbance to <i>vegetation</i> (mowing, pasturing, burning, etc.)? If yes, describe:					
Hvduele av					
Hydrology X Y □ N Springs or seeps X visible □ likely? Watercress present? □ Yes X No					
Y \square N Rivulets present? If yes, average depth $\frac{2-4}{\square}$ inches.					
X					
■ Y □ N Water visible on surface? Check all that apply: □ small puddles/depressions (3_"deep)					
rivulets (2 " deep) larger pools/ponds ("deep)					
■ Y N Evidence of flooding? If yes, describe indicators					

Project Name	Maryland-American Water	Wet	land <u>W2</u> (cont.)
	g Unit (optional): ions confirm mapped type?	NO U nknown	
Soils - PEM F	Portion of Wetland		
Mucky⁴? ■YES ■NO	How much of it (PEM) is mucky ? ☐ <10% ☐ 10-29% ☐ 30-49% ☐ 50-70% ☐ >70%	Mucky soils range in depth from: 2 to 10 "	Most of the mucky part(s) the wetland can be probed ⁵ : ☐ 3-5" ■ 6-8" ☐ 9-11" ☐ ≥12
Non-mucky ⁶ ? ☐YES ■NO	How much of it (PEM) is non-mucky ? □ <10% ■ 10-29% □ 30-49% □ 50-70% □ >70%		
Soils – PSS an	nd/or PFO Portions of Wetland		
Mucky ⁴ ? ☐YES ☐NO	How much of it is mucky ? □ <10% □ 10-29% □ 30-49% □ 50-70% □ >70%	Mucky soils range in depth from:to"	Most of the mucky part(s) the wetland can be probed ⁵ : \square 3-5" \square 6-8" \square 9-11" \square \geq 12"
	tation (characterize the wetland as a weesent (≥ 5% aereal coverage), and also ci	· ·	20% coverage).
x sensitive ferr	shes skunk cabbage cattail sweet Since cutgrass carthumb reed car wood red maple willow poison su inant species:	nary grass D Phragma umac 🗵 multiflora ros	ites ☐ purple loosestrife
Other herptiles Additional Con	urtles observed? YES NO If y Sobserved previously observed: frogst	heets if necessary)	
INVESTIGAT	O UNSURE The soils criterion for UNSURE The vegetation criterion	or bog turtle habitat is on for bog turtle hab	met. itat is met.
I certify that to	the best of my knowledge, all of the infor	rmation provided here	ein is accurate and complete.
Autumn M. Thomas	Autru	MM_	09/30/15
Investigator's N		or's Signature	Date

APPENDIX C PHOTOGRAPHS

Photo 1 (09-29-2015)
Wetland 1 (W1) is a palustrine
emergent (PEM) wetland located on
the eastern bank floodplain of
Winters Run. View is close-up of
wetland plot.

Photo 2 (09-29-2015)
Wetland 1 (W1) extends off the project study area for a short distance before connecting to Winters Run. View is northwest from wetland plot.

Photo 3 (09-29-2015) Wetland 1 is a toe-of-slope drainage swale that is partially an unvegetated, concave surface. View is southeast from wetland plot.

Photo 4 (09-29-2015)
Upland plot for the project study area is on the floodplain of Winters Run.
View is southwest near Wetland 1 boundary and start of Stream 1.

Photo 5 (09-29-2015) Stream 1 (S1) is an ephemeral watercourse located between Wetland 1 and Winters Run. View is north and upstream from Flag S1-1.

Photo 6 (09-29-2015) Upstream view of Stream 1 from flag S1-4 looking northeast.

Photo 7 (09-29-2015)

Downstream view of Stream 1 at flag S1-4 looking south at junction with Winters Run.

Photo 8 (09-30-2015) Wetland 2 (W2) is a PEM wetland dominated by tearthumb, reed canary grass, and cattail. View is northeast at the wetland plot.

Site Photographs: Wetlands and Waterways



Photo 10 (09-30-2015) Upstream view of Stream 2, ephemeral stream originating at spring. View is west from flag S2-1.

Photo 11 (09-30-2015) Downstream view of Stream 2. View is east from flag S2-1.

Photo 12 (09-30-2015) Upstream view of Stream 3, perennial stream originating at springhouse. View is east from flag S3-4.

Photo 13 (09-30-2015) Downstream view of Stream 3 before diffusing into Wetland 2. View is east from flag S3-4.

Photo 14 (09-30-2015) Upstream view of Stream 3 when rechannelizes at UNT to Winters Run (S8). View is west from flag S3-6B.

Photo 15 (09-30-2015) Downstream view of Stream 4, intermittent stream draining Wetland 2 into UNT to Winters Run (S8). View is east from flag S4-1.

Photo 16 (09-30-2015) Upstream view of Stream 4 at junction with UNT to Winters Run (S8). View is northwest from flag S4-2.

Photo 17 (09-30-2015)

Downstream view of Stream 5, intermittent stream draining Wetland 2 into UNT to Winters Run (S8). View is east from flag S5-2.

Photo 18 (09-30-2015) Upstream view of Stream 5 at junction with UNT to Winters Run (S8). View is west from flag S5-3.

Photo 19 (09-30-2015)
Downstream view of Stream 6,
ephemeral drainage of overland flow
from agricultural field into UNT to
Winters Run (S8). View is southeast
from flag S6-1.

Photo 20 (09-30-2015) Upstream view of Stream 6 from junction with UNT to Winters Run (S8). View is northwest from flag S6-2.

Photo 21 (09-30-2015)
Downstream view of Stream 7,
ephemeral drainage of overland flow
from agricultural field into UNT to
Winters Run (S8). View is southeast
from flag S7-1.

Photo 22 (09-30-2015) Upstream view of Stream 7 from junction with UNT to Winters Run (S8). View is north from flag S7-3.

Photo 23 (09-29-2015) Downstream view of Stream 8, UNT to Winters Run (S8). View is north near flag W2-11.

Photo 24 (09-29-2015) Upstream view of Stream 8, UNT to Winters Run (S8). View is southwest near flag W2-11.

Photo 25 (09-30-2015)
Downstream view of Stream 8, UNT to Winters Run (S8) at junction with Winters Run after heavy rains previous evening. View is southeast near flag S7-3.

Photo 26 (09-30-2015)

Downstream view of Winters Run (WR) at junction with UNT to Winters Run (S8) after heavy rains previous evening. View is southeast.

Photo 27 (09-30-2015)
Upstream view of Winters Run (WR) at junction with UNT to Winters Run (S8) after heavy rains previous evening. View is north.

Photo 28 (11-02-2015) View of springhouse source of Stream 3. View is northwest.

Photo 29 (09-30-2015) View of harvested corn field and reforestation area in distance. View is east.

Photo 30 (09-30-2015) View of harvested corn field with former barn and new residential development construction in distance. View is southwest.

APPENDIX D PROJECT ENVIRONMENTAL REVIEW LETTERS

Martin O'Malley, Governor Anthony G. Brown, Lt. Governor Joseph P. Gill, Secretary Frank W. Dawson III, Deputy Secretary

September 17, 2014

Danielle Iuliucci Gannett Fleming, Inc. PO Box 67100 Harrisburg, PA 17106-7100

RE: Environmental Review for The American Water Company, Bel Air Reservoir Feasibility Study, Bel Air, US Route 1, Winters Run, Harford County, MD.

Dear Ms. Iuliucci:

The Wildlife and Heritage Service has determined that there are no State or Federal records for rare, threatened or endangered species within the boundaries of the project site as delineated. As a result, we have no specific comments or requirements pertaining to protection measures at this time. This statement should not be interpreted however as meaning that rare, threatened or endangered species are not in fact present. If appropriate habitat is available, certain species could be present without documentation because adequate surveys have not been conducted.

Thank you for allowing us the opportunity to review this project. If you should have any further questions regarding this information, please contact me at (410) 260-8573.

Sincerely,

Lori A. Byrne,

Environmental Review Coordinator Wildlife and Heritage Service MD Dept. of Natural Resources

ER# 2014.1333.ha

August 27, 2014

Lori Byrne DNR Wildlife & Heritage Service 580 Taylor Avenue Tawes Office Bldg E-1 Annapolis, MD 21401 **GANNETT FLEMING, INC.** P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

MAILED 8/27/14 Certified 7013 2250 0000 4345 7922

RE: Request for Environmental Review

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

Dear Ms. Byrne:

Gannett Fleming, Inc. (Gannett Fleming) is requesting an environmental review of a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting an environmental review to determine if any species of concern occur within or in close proximity to the study area. Please refer to **Figure 1** for the USGS topographic map of the study area. **Figure 2** provides an aerial photograph of the project study area.

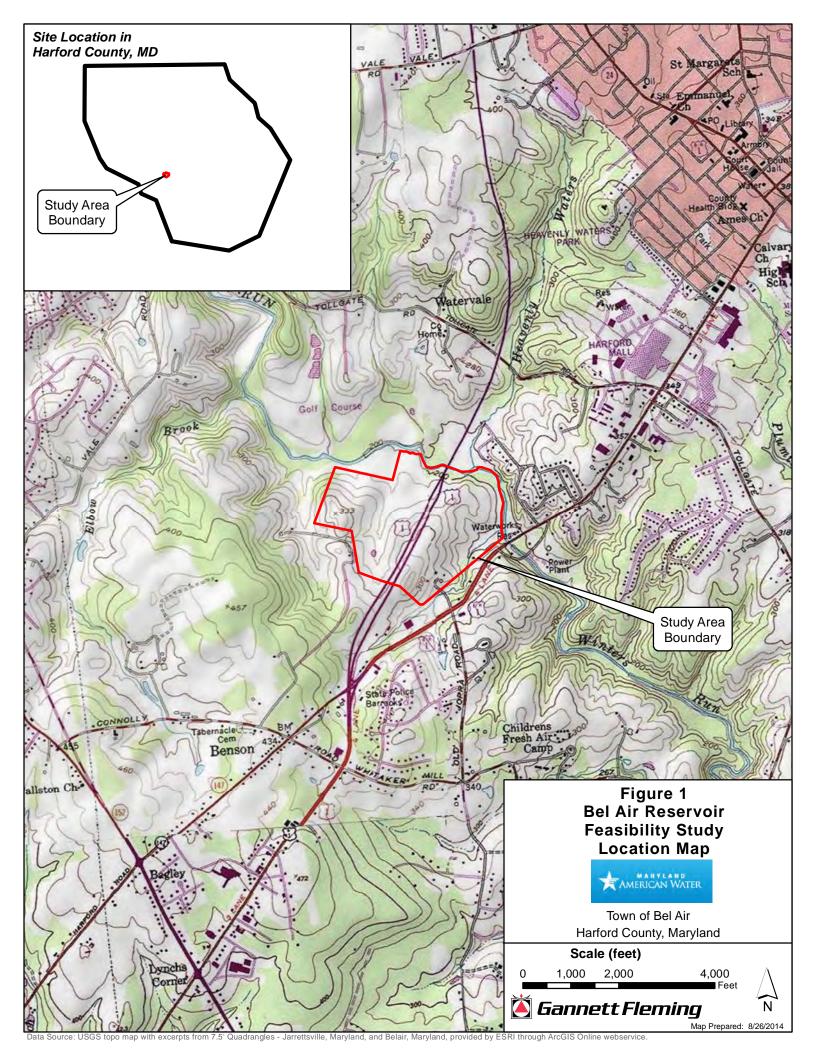
The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area. We would appreciate an expedited environmental review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci

Environmental Scientist


Attachments

Copies Furnished (electronically): S. List

S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist

File

August 27, 2014

US Fish and Wildlife Service Chesapeake Bay Ecological Services Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401

RE: Project Review Request

The Maryland American Water Company Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

To whom it may concern:

GANNETT FLEMING, INC. P.O. Box 67100 Harrisburg, PA 17106-7100

Location: 207 Senate Avenue Camp Hill, PA 17011

Office: (717) 763-7211 Fax: (717) 763-8150 www.gannettfleming.com

SUBMITTED ELECTRONICALLY 8/27/14

Gannett Fleming, Inc. (Gannett Fleming) is requesting a project review from the US Fish and Wildlife Service's Chesapeake Bay Ecological Services Field Office for a project located on the east and west sides of the Bel Air Bypass (US Route 1) approximately 1 mile south of its intersection with MD Route 24 in Bel Air, Harford County, Maryland (39.517203 N, 76.375215 W). Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. To support permitting, we are requesting a project review to determine if any species of concern occur within or in close proximity to the study area.

Gannett Fleming was retained by the Maryland American Water Company (MAWC) to evaluate the feasibility of creating an off-stream raw water storage reservoir that would provide the Town of Bel Air with drinking water during dry periods. This project is currently in a conceptual design phase with field reconnaissance and preliminary engineering studies to occur in the near future. The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC.

The Bel Air water system is supplied primarily by Winters Run. The Maryland Department of the Environment (MDE) regulates the Harford County water treatment plant, operated by the MAWC. When stream flow falls below the minimum pass-by flow stipulated by the MDE, water should not be withdrawn from Winters Run. During such times historically, Harford County has allowed the MAWC system to continue operating to meet system demands. However, since Harford County expects the Bel Air water supply to experience long-term supply shortfalls, alternative water supply systems are being evaluated. Gannett Fleming is evaluating the feasibility of building a reservoir in

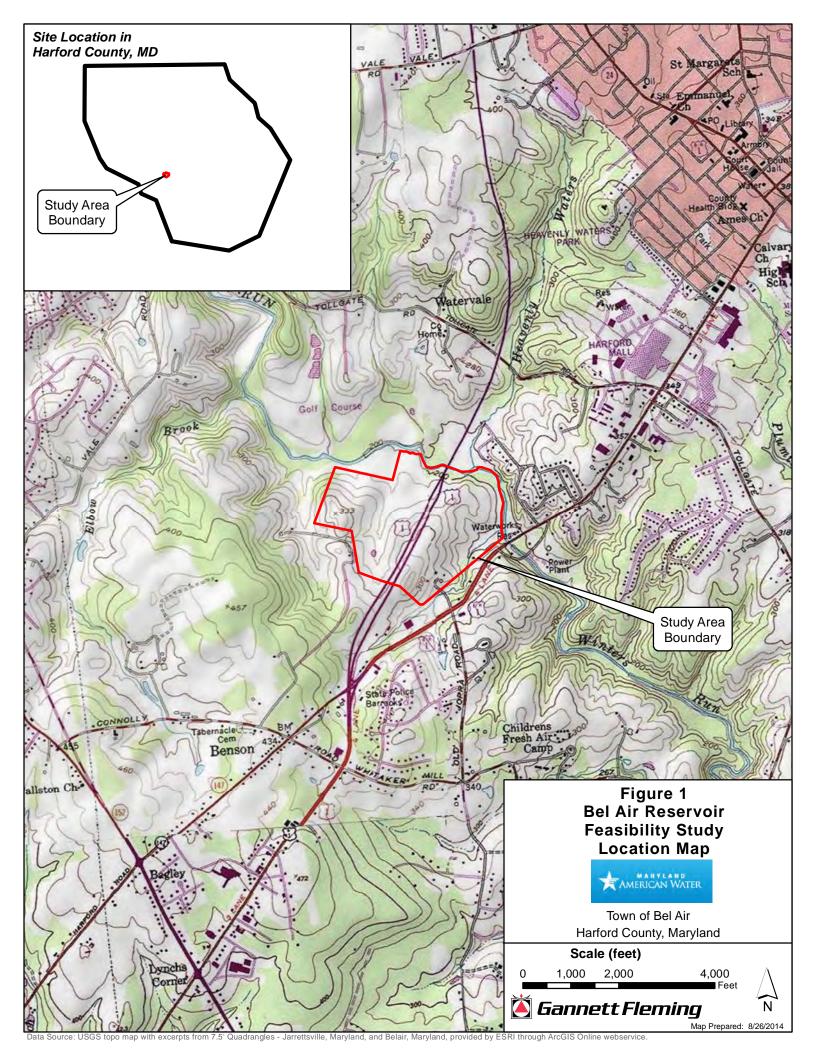
an off-stream agricultural area adjacent to Winters Run to store water from Winters Run during periods of high flow. The reservoir would provide Bel Air with water when water levels in Winters Run fall below MDE withdraw limits.

The Information, Planning, and Conservation (IPaC) System indicated that no listed species, critical habitats, or national wildlife refuges were found within the vicinity of the proposed project. The IPaC System identified 13 migratory birds of concern that may be impacted. Three (3) National Wetlands Inventory wetland types were identified within the project study area, including freshwater forested/shrub wetland (PFO1A), freshwater pond (PUBHx), and riverine (R2UBH). Please refer to **Attachment 1** for the USGS topographic map of the study area. **Attachment 2** provides an aerial photograph of the project study area and **Attachment 3** provides the IPaC System Trust Resources List.

Please provide Gannett Fleming with an official response letter regarding any species of concern within or in close proximity to the study area as well as any conservation measures that should be implemented. We would appreciate an expedited review, if possible. Please contact me at (717) 763-7211, extension 2914, with any questions or requests for additional information. Thank you for your cooperation; we look forward to working with you on this project.

Very truly yours,

Danielle Iuliucci


Environmental Scientist

Attachments

Copies Furnished (electronically): S. Liskovich, GF Project Manager

D. Graff, GF Sr. Environmental Scientist S. Smith, GF Environmental Scientist

File

U.S. Fish and Wildlife Service

Trust Resources List

This resource list is to be used for planning purposes only — it is not an official species list.

Endangered Species Act species list information for your project is available online and listed below for the following FWS Field Offices:

Chesapeake Bay Ecological Services Field Office 177 ADMIRAL COCHRANE DRIVE ANNAPOLIS, MD 21401 (410) 573-4599

Project Name:

Bel Air Reservoir Feasibility Study

U.S. Fish and Wildlife Service

Trust Resources List

Project Location Map:

Project Counties:

Harford, MD

Geographic coordinates (Open Geospatial Consortium Well-Known Text, NAD83):

MULTIPOLYGON (((-76.3774704 39.519473, -76.376612 39.5211613, -76.3759469 39.5208799, -76.3750885 39.5208634, -76.3745736 39.519953, -76.3732217 39.5201185, -76.3722776 39.5197047, -76.3702177 39.5198206, -76.3695739 39.5194399, -76.3692306 39.5187281, -76.3691877 39.5180329, -76.3690804 39.5174039, -76.3693808 39.5162783, -76.3690589 39.5156161, -76.3757069 39.5123041, -76.3772133 39.5133644, -76.3801487 39.5142417, -76.3804985 39.5165925, -76.383288 39.5171884, -76.3815724 39.5204824, -76.3774704 39.519473)))

U.S. Fish and Wildlife Service

Trust Resources List

Project Type:

Dam

Endangered Species Act Species List (<u>USFWS Endangered Species Program</u>).

There are no listed species found within the vicinity of your project.

Critical habitats within your project area:

There are no critical habitats within your project area.

FWS National Wildlife Refuges (<u>USFWS National Wildlife Refuges Program</u>).

There are no refuges found within the vicinity of your project.

FWS Migratory Birds (<u>USFWS Migratory Bird Program</u>).

The protection of birds is regulated by the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA). Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. For more information regarding these Acts see http://www.fws.gov/migratorybirds/RegulationsandPolicies.html.

All project proponents are responsible for complying with the appropriate regulations protecting birds when planning and developing a project. To meet these conservation obligations, proponents should identify potential or existing project-related impacts to migratory birds and their habitat and develop and implement conservation measures that avoid, minimize, or compensate for these impacts. The Service's Birds of Conservation Concern (2008) report identifies species, subspecies, and populations of all migratory nongame birds that, without additional conservation actions, are likely to become listed under the Endangered Species Act as amended (16 U.S.C 1531 et seq.).

For information about Birds of Conservation Concern, go to http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/BCC.html.

Trust Resources List

Migratory birds of concern that may be affected by your project:

There are 13 birds on your Migratory birds of concern list. The Division of Migratory Bird Management is in the process of populating migratory bird data with an estimated completion time of Fall 2014; therefore, the list below may not include all the migratory birds of concern in your project area at this time. While this information is being populated, please contact the Field Office for information about migratory birds in your project area.

Species Name	Bird of Conservation Concern (BCC)	S p e c i e s Profile	Seasonal Occurrence in Project Area
American bittern (Botaurus lentiginosus)	Yes	species info	Wintering
Bald eagle (Haliaeetus leucocephalus)	Yes	species info	Year-round
Black-billed Cuckoo (Coccyzus erythropthalmus)	Yes	species info	Breeding
cerulean warbler (Dendroica cerulea)	Yes	species info	Breeding
Golden-Winged Warbler (Vermivora chrysoptera)	Yes	species info	Breeding
Least Bittern (Ixobrychus exilis)	Yes	species info	Breeding
Marbled Godwit (Limosa fedoa)	Yes	species info	Wintering
Pied-billed Grebe (Podilymbus podiceps)	Yes	species info	Breeding
Purple Sandpiper (Calidris maritima)	Yes	species info	Wintering
Rusty Blackbird (Euphagus carolinus)	Yes	species info	Wintering
Short-billed Dowitcher (Limnodromus griseus)	Yes	species info	Wintering
Wood Thrush (Hylocichla mustelina)	Yes	species info	Breeding
Worm eating Warbler (Helmitheros vermivorum)	Yes	species info	Breeding

U.S. Fish and Wildlife Service

Trust Resources List

NWI Wetlands (<u>USFWS National Wetlands Inventory</u>).

The U.S. Fish and Wildlife Service is the principal Federal agency that provides information on the extent and status of wetlands in the U.S., via the National Wetlands Inventory Program (NWI). In addition to impacts to wetlands within your immediate project area, wetlands outside of your project area may need to be considered in any evaluation of project impacts, due to the hydrologic nature of wetlands (for example, project activities may affect local hydrology within, and outside of, your immediate project area). It may be helpful to refer to the USFWS National Wetland Inventory website. The designated FWS office can also assist you. Impacts to wetlands and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes. Project Proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate <u>U.S. Army Corps of Engineers District</u>.

Data Limitations, Exclusions and Precautions

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery and/or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Exclusions - Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Precautions - Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the

U.S. Fish and Wildlife Service

Trust Resources List

advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

The following wetland types intersect your project area in one or more locations:

Wetland Types	NWI Classification Code	Total Acres
Freshwater Forested/Shrub Wetland	PFO1A	1.7732
Freshwater Pond	<u>PUBHx</u>	0.1999
Riverine	R2UBH	61.948

United States Department of the Interior

U.S. Fish & Wildlife Service Chesapeake Bay Field Office 177 Admiral Cochrane Drive Annapolis, MD 21401 410/573 4575

Online Certification Letter

Today's date: September 22, 2014

Project: The Maryland American Water Company

Bel Air Reservoir Feasibility Study Bel Air, Harford County, Maryland

Dear Applicant for online certification:

Thank you for using the U.S. Fish and Wildlife Service (Service) Chesapeake Bay Field Office online project review process. By printing this letter in conjunction with your project review package, you are certifying that you have completed the online project review process for the referenced project in accordance with all instructions provided, using the best available information to reach your conclusions. This letter, and the enclosed project review package, completes the review of your project in accordance with the Endangered Species Act of 1973 (16 U.S.C. 1531-1544, 87 Stat. 884), as amended (ESA). This letter also provides information for your project review under the National Environmental Policy Act of 1969 (P.L. 91-190, 42 U.S.C. 4321-4347, 83 Stat. 852), as amended. A copy of this letter and the project review package must be submitted to this office for this certification to be valid. This letter and the project review package will be maintained in our records.

Based on this information and in accordance with section 7 of the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.), we certify that except for occasional transient individuals, no federally proposed or listed endangered or threatened species are known to exist within the project area. Therefore, no Biological Assessment or further section 7 consultation with the U.S. Fish and Wildlife Service is required. Should project plans change, or if additional information on the distribution of listed or proposed species becomes available, this determination may be reconsidered.

This response relates only to federally protected threatened or endangered species under our jurisdiction. For additional information on threatened or endangered species in Maryland, you should contact the Maryland Wildlife and Heritage Division at (410) 260-8540. For information in Delaware you should contact the Delaware Natural Heritage and Endangered Species Program, at (302) 653-2880. For information in the District of Columbia, you should contact the National Park Service at (202) 535-1739.

The U.S. Fish and Wildlife Service also works with other Federal agencies and states to minimize loss of wetlands, reduce impacts to fish and migratory birds, including bald eagles, and restore habitat for wildlife. Information on these conservation issues and how development projects can avoid affecting these resources can be found on our website (www.fws.gov/chesapeakebay)

We appreciate the opportunity to provide information relative to fish and wildlife issues, and thank you for your interest in these resources. If you have any questions or need further assistance, please contact Chesapeake Bay Field Office Threatened and Endangered Species program at (410) 573-4527.

Sincerely,

Genevieve LaRouche Field Supervisor

3.4

Maryland Historic Trust Coordination

December 23, 2015

Mr. David Graff Senior Environmental Scientist Gannett Fleming, Inc. P.O. Box 67100 Harrisburg, PA 17106-7100

Re:

Bel Air Impoundment Project / Reservoir Feasibility Study

Harford County, Maryland

Dear Mr. Graff:

Thank you for your recent letter, dated November 18, 2015 and received by the Maryland Historical Trust (Trust) on November 20, 2015, regarding the above-referenced project. Your letter provided updates and additional information on the proposed project as requested in our prior letter dated October 20, 2014. Since the project may entail federal and state permitting through the Corps of Engineers and Maryland Department of the Environment, we are reviewing it for possible effects on historic and archeological resources, pursuant to Section 106 of the National Historic Preservation Act of 1966, and the Maryland Historical Trust Act of 1985. We offer the following comments.

Since our initial review of the undertaking, project plans have been further developed. The project area now encompasses a circa 82 acre parcel situated entirely on the east side of US 1. Therefore, the Edgely Grove farmstead (MIHP #HA-1081) is no longer within the area of potential effect for this undertaking. The southern portion of the current project area does contain remnant outbuildings associated with the Amos-Archer farmstead (MIHP #HA-1260). In 2008, the Trust determined that HA-1260 does not meet the criteria for eligibility in the National Register of Historic Places. Thus, the current project area does not contain any properties eligible for the National Register. While the parcel may contain archeological resources related to its former uses as a farmstead, the majority of the area slated for construction encompasses sloping terrain and does not incorporate the core area of the farmstead and its outbuilding. In our opinion, the project area is unlikely to contain National Register eligible archeological resources and archeological investigations are not warranted for this project.

For the reasons noted above, we concur that the undertaking will have no effect on historic properties, including archeological sites. Please include a copy of this letter with any permit/grant applications to federal or state agencies for this project, to document the results of consultation with our office.

For questions or further assistance, please contact or me at <u>beth.cole@maryland.gov</u> / 410-514-7631. Thank you for providing us this opportunity to comment.

Sincerely.

Beth Cole

Administrator, Project Review and Compliance

EJC/201505180

November 18, 2015

CERTIFIED MAIL NO. 7014 1200 0002 0474 0402 RETURN RECEIPT REQUESTED

Mr. Jonathan Sager, Preservation Officer Maryland Historic Trust 100 Community Place Crownsville, MD 21032

RE: Request for Maryland Historical Trust Review Bel Air Impoundment Project (Bel Air Reservoir Feasibility Study) Town of Bel Air, Harford County Maryland

Dear Mr. Sager,

Gannett Fleming (GF) on behalf of Maryland American Water Company (MAWC) is continuing coordination efforts that began in August 2014. Gannett Fleming requested an initial project review from the Maryland Historic Trust (MHT) for the Bel Air Reservoir Feasibility Study. On October 20, 2014, MHT issued a letter that identified Edgely Grove, a farm located in western portion of the feasibility study's project area, as a local landmark and as listed in the Maryland Inventory of Historic Properties (MIHP) as HA-1081. The letter also requested more detailed project information to conduct a meaningful evaluation of the project area.

Since our initial coordination, the access road and culvert from Bel Air Road have been developed. Current site plans and limit of disturbance boundaries do not encroach on the Edgely Grove buildings. The temporary access to our project site is adjacent to the Edgely Grove barn. The project does not propose to disturb the existing barn or other associated structures.

More detailed project information is now available and we are requesting the project review be continued to support permitting. The following information has been enclosed to aid in your review of this project:

- Enclosure 1 MHT Letter dated October 20, 2014
- Enclosure 2 Project Description and Location Maps
- Enclosure 3 Site Photographs
- Enclosure 4 Conceptual Project Layout Plan

Gannett Fleming, Inc.

■ Enclosure 5 – List of Federal and State Agency Permits and Authorizations

The official MHT decision will be included in project required permit applications and authorizations.

Please do not hesitate to call me at (717) 763-7212 x2073 if you have any questions regarding this request or the proposed project. We look forward to your prompt response to this letter.

Very truly yours,

David H. Graff, PWS, CSE, CWB Senior Environmental Scientist GANNETT FLEMING, INC.

Enclosures

cc: T. Nokovich, PE (MAWC)

S. Liskovich, PE (GF)

C. Beenenga, PE (GF)

File 059267

MHT LETTER DATED OCTOBER 20, 2014

October 20, 2014

Ms. Danielle Iuliucci Gannett Fleming, Inc. P.O. Box 67100 Harrisburg, PA 17106-7100

Re:

Bel Air Reservoir Feasibility Study

Harford County, Maryland

Dear Ms. Iuliucci:

Thank you for your recent letter, dated August 27, 2014 and received by the Maryland Historical Trust (Trust) on September 2, 2014, requesting our review of the above-referenced project. According to your submittal, Gannett Fleming is examining the feasibility of creating an off-stream raw water storage reservoir to provide the Town of Bel Air with drinking water during dry periods. The study area encompasses a large parcel of land on either side of US 1 immediately south of Winter's Run. Since the project may require federal and state permitting through the U.S. Army Corps of Engineers and Maryland Department of the Environment, we are reviewing it for possible effects on historic and archeological resources, pursuant to Section 106 of the National Historic Preservation Act and Sections 5A-325 and 5A-326 of the Annotated Code of Maryland.

The western portion of the project area includes agricultural fields and other landscape features that are associated with a farm known as "Edgely Grove." Edgely Grove has not been formally evaluated to determine if it is eligible for listing in the National Register of Historic Places and therefore "historic" for the purpose of the laws mentioned above. However, the designation of the property as a local landmark and its inclusion in the Maryland Inventory of Historic Properties (MIHP) as number HA-1081 indicates that the property may be eligible and, depending on the expected impacts of the project, a formal evaluation of the property may be necessary.

The MIHP does not record any known archeological sites within or immediately adjacent to the study area. However, given the parcel's proximity to Winter's Run as well as documented historic occupation on the property and vicinity, the project area has the potential to contain archeological resources that have not yet been identified

In order to make meaningful comments regarding the project's possible effects on cultural resources, we require further information regarding the proposed project. Specifically, please provide the following items when available:

- a detailed description of the proposed improvements (including the facility itself as well as any
 associated infrastructure, access, environmental mitigation activities, and any other related actions);
- conceptual layout and plans for the project; and

Martin O'Mailey, Governor Anthony G. Brown, Lt. Governor Richard Eberhart Hall, AICP, Secretary

Amanda Stakem Conn, Esq., Deputy Secretary

Danielle Iuliucci Bel Air Reservoir Feasibility Study October 20, 2014 Page 2 of 2

• a list of all possible federal and state agency involvement in the project (anticipated funds, permits, licenses).

Once we receive the information noted above, we will provide our comments and make recommendations on the need for cultural resources investigations.

We look forward to further consultation to successfully complete the historic preservation review of this project. For questions or further assistance, please contact Jonathan Sager (regarding historic buildings and landscapes) at jonathan.sager@maryland.gov / 410-514-7636 or Beth Cole (regarding archeology) at beth.cole@maryland.gov / 410-514-7631. Thank you for providing us this opportunity to comment.

Sincerely,

Jonathan Sager

Preservation Officer

Maryland Historical Trust

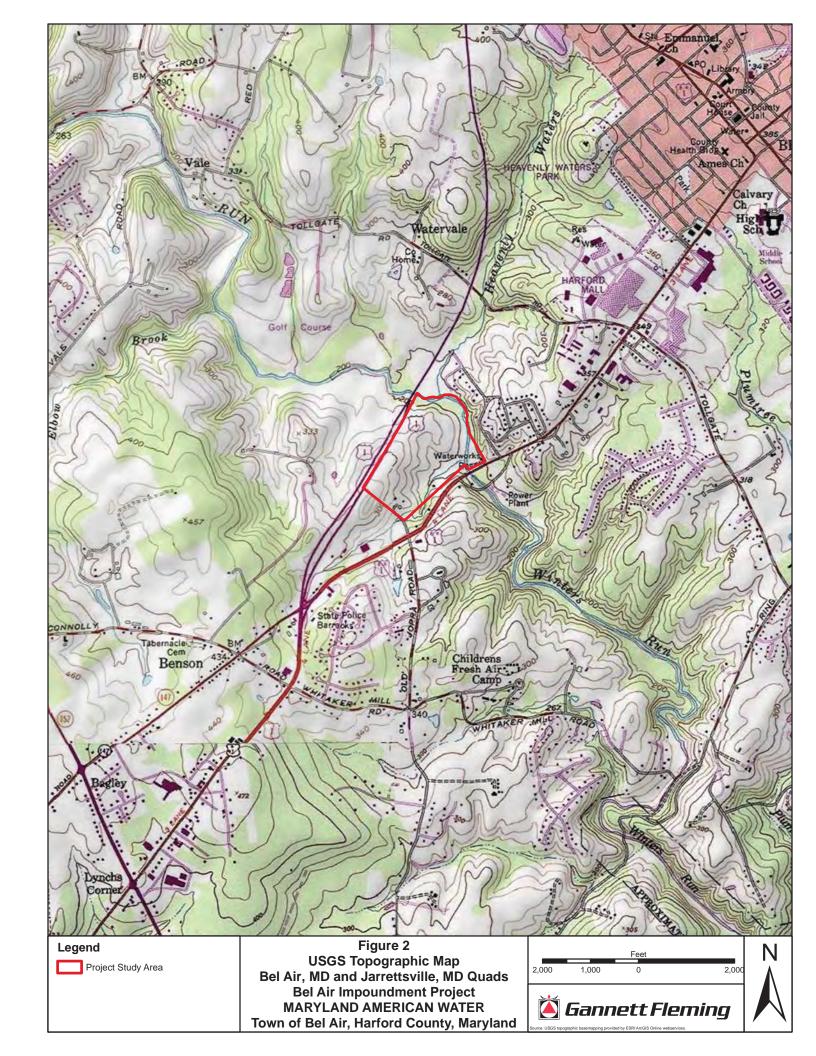
JES \ EJC 201404661

PROJECT DESCRIPTION AND LOCATION MAPS

Project Description

Maryland American Water Company (MAWC) is proposing to construct an off-stream raw water storage reservoir to serve the Town of Bel Air, Maryland. The proposed project requires a raw water intake structure on Winters Run and associated pipeline crossings on Winters Run to connect the existing Winters Run Water Treatment Plant. Construction for this project is proposed in an upland field currently used as agricultural land. The connecting infrastructure between the impoundment and the plant will need to cross Winters Run and its floodplain.


The existing Bel Air water system is supplied primarily from the existing Winters Run Water Treatment Plant (2.0 MGD nominal capacity) that treats water from Winters Run. The Winters Run withdrawal is permitted by the Maryland Department of the Environment (MDE) at 1.4 MGD, annual average. The MAWC also has an agreement with Harford County for a 0.5 MGD supply through an existing metered interconnection.


When stream flow drops below the minimum pass-by flow stipulated by MDE, water cannot be withdrawn by the water treatment plant. During such times historically, the Harford County has allowed the MAWC system to take water in excess of the agreement amount to meet system demands. The County is now facing projected long-term supply shortfalls and has alerted MAWC that they can no longer commit to a supplemental supply. As a result, the MAWC identified and evaluated a number of options for a supplemental supply.

In working with Harford County and MDE to evaluate supply alternatives, the County identified a County-owned parcel adjacent to Winters Run, upstream of the Winters Run Water Treatment Plant that could potentially be used for construction of an off-stream storage reservoir. The reservoir would be purchased by MAWC and used to supply the WTP when withdrawal from the stream is restricted or prohibited. The reservoir would be refilled from the stream when flows are sufficient to meet both the supply needs and the refill rates.

Project Site Description

The project study area investigated was approximately 82.18 acres in size (Figures 1 and 2). The limit of disturbance is provided as a conceptual layout plan for your review and is concentrated in the agricultural field (Enclosure 4). Construction access will enter the site from Old Joppa Road through the agricultural field. Activities within the floodplain of Winters Run will consist of installation of the Reservoir outfall structure and the necessary water pipelines to connect the reservoir to the existing Winters Run Water Treatment Plant and intake.

SITE PHOTOGRAPHS

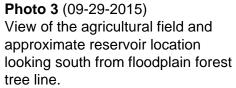

Photo 1 (09-29-2015)
View of the agricultural field looking southwest from the approximate reservoir location. New residential construction and the Edgely Grove Barn are visible in the distance.

Photo 2 (09-29-2015) View of the agricultural field and reforestation planting area looking east.

Enclosure 3: Site Photographs

Photo 4 (09-29-2015) View of the agricultural field and floodplain forest tree line looking east from the northwestern most corner of the agricultural field.

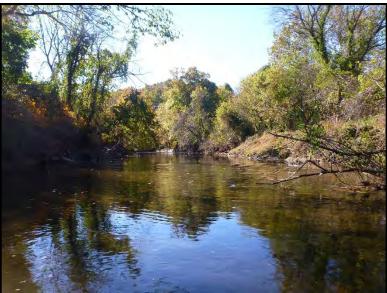
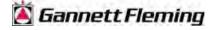


Photo 5 (10-19-2015) View of Winters Run looking downstream from near the proposed floodplain and stream crossing. View is south.

Enclosure 3: Site Photographs

Photo 6 (10-19-2015) View of the downstream right bank of Winters Run at the approximate location of the proposed outfall structure and water pipeline crossing. View is west.



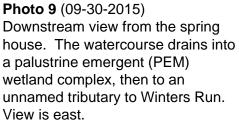

Photo 7 (10-19-2015) View of the downstream left bank of Winters Run at the approximate water pipeline crossing. View is east.

Photo 8 (11-02-2015) View of springhouse located downslope of the reforestation planting area and the wetland complex.

Enclosure 3: Site Photographs

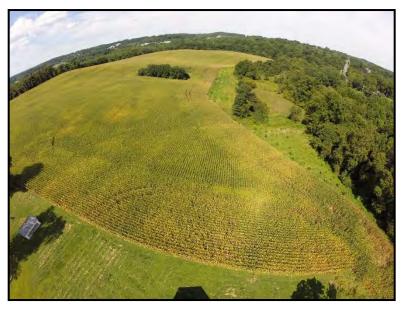
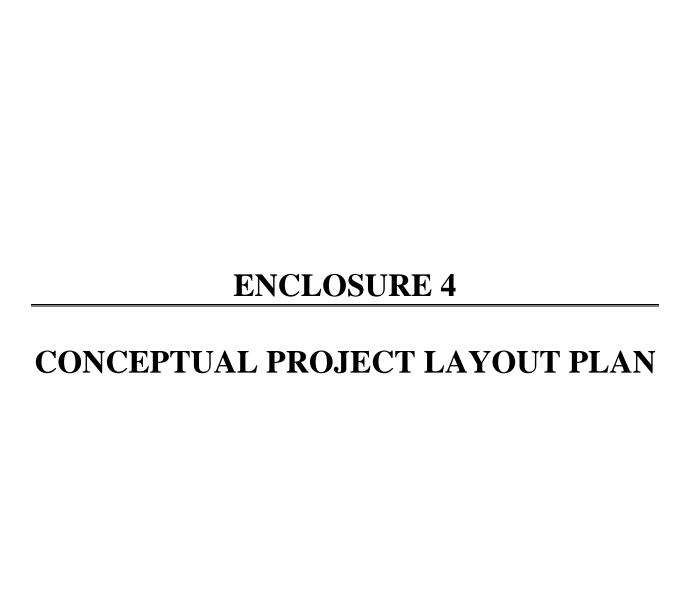
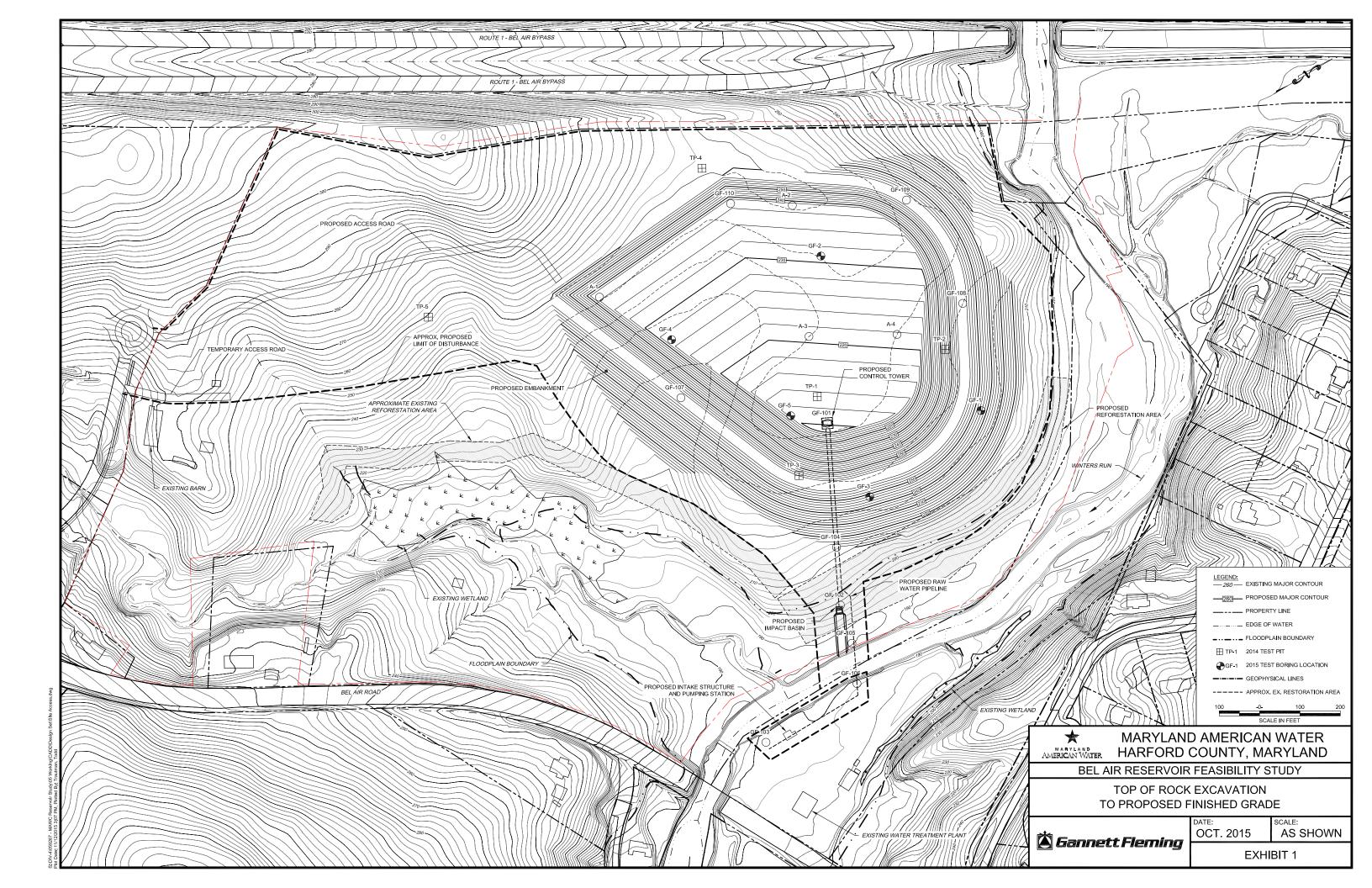


Photo 10 (08-23-2015) View of improvements to Old Joppa Road near the Edgely Grove barn. View is southeast.


Photo 11 (08-23-2015) View of the driveway and road improvements adjacent to the Edgely Grove barn. View is northeast.



Enclosure 3: Site Photographs

Photo 12 (08-23-2015)
View of the agricultural field and proposed project area in the distance. View is north from the driveway in front of the Edgely Grove barn.

LIST OF FEDERAL AND STATE AGENCY PERMITS AND AUTHORIZATIONS

List of Federal and State Agency Permits and Authorizations

Permit/Authorization	Issuing Authority
Water Appropriations and Use Permit	Maryland Department of the Environment
Surface Water Discharge Permit	Maryland Department of the Environment
Joint Permit Application	Maryland Department of the Environment & U.S. Army Corp of Engineers
Forest Conservation	Harford County
Dam Safety Application	Maryland Department of the Environment
Stormwater Management Approval	Harford County
Grading/Sediment & Erosion Control Approval	Harford County
Building Permit	Harford County
Water and Sewerage Construction	Maryland Department of the Environment
National Pollution Discharge Elimination System (NPDES)/Notice of Intent (NOI)	Maryland Department of the Environment

낕	(Domestic Mail Or	MAIL _{TM} REC	overage Provided)	
2040 4240	OFF	tion visit our website	BelAir	
	Postage Certified Fee Return Receipt Fee		Postmark Here	
000	(Endorsement Required) Restricted Delivery Fee (Endorsement Required)			
1,200	Total Postage & Fees	\$		
7074	Sent to			

and the const		
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY	
 Complete items 22 and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature Agent Addressee B. Received by (Printed Name) C. Date of Delivery Bonne Saden C. Date of Delivery Li 20/15 D. Is delivery address different from item 1?	
1. Article Addressed to:	If YES, enter delivery address below:	
Mr. Jonathan Sager Manyland Historic Trust 100 Community Place		
Crownsville, MD 21032	3. Service Type ☑ Certified Mail® ☐ Priority Mail Express™ ☐ Registered ☐ Return Receipt for Merchandise ☐ Insured Mail ☐ Collect on Delivery	
	4. Restricted Delivery? (Extra Fee) ☐ Yes	
2. Article Number 7 114	1200 0002 0474 0402	
: PS Form 3811, July 2013 Domestic	Return Receipt	